Skip to main content

Modelling and Integration Concepts of Multibody Systems on Lie Groups

  • Chapter
  • First Online:
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 35))

  • 2695 Accesses

Abstract

Lie group integration schemes for multibody systems (MBS) are attractive as they provide a coordinate-free and thus singularity-free approach to MBS modeling. The Lie group setting also allows for developing integration schemes that preserve motion integrals and coadjoint orbits. Most of the recently proposed Lie group integration schemes are based on variants of generalized alpha Newmark schemes. In this chapter constrained MBS are modeled by a system of differential-algebraic equations (DAE) on a configuration space being a subvariety of the Lie group \(SE(3)^{n}\). This is transformed to an index 1 DAE system that is integrated with Munthe-Kaas (MK) integration scheme. The chapter further addresses geometric integration schemes that preserve integrals of motion. In this context, a non-canonical Lie-group Störmer-Verlet integration scheme with direct \(SO(3)\) rotational update is presented. The method is 2nd order accurate and it is angular momentum preserving for a free-spinning body. Moreover, although being fully explicit, the method achieves excellent conservation of the angular momentum of a free rotational body and the motion integrals of the Lagrangian top. A higher-order coadjoint-preserving integration scheme on \(SO(3)\) is also presented. This method exactly preserves spatial angular momentum of a free body and it is particularly numerically efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Austin M, Krishnaprasad PS, Wang LS (1993) Almost Lie-Poisson integrators for the rigid body. J Comput Phys 107:105–117

    Article  MATH  MathSciNet  Google Scholar 

  2. Blajer W (2011) Methods for constraint violation suppression in the numerical simulation of constrained multibody systems—a comparative study. Comput Methods Appl Mech Eng 200:1568–1576

    Article  MATH  MathSciNet  Google Scholar 

  3. Bottasso CL, Borri M (1998) Integrating finite rotations. Comput Methods Appl Mech Eng 164:307–331

    Article  MATH  MathSciNet  Google Scholar 

  4. Brüls O, Cardona A, Arnold M (2012) Lie group generalized-alpha time integration of constrained flexible multibody systems. Mech Mach Theory 48:121–137

    Article  Google Scholar 

  5. Brüls O, Cardona A (2010) On the use of Lie group time integrators in multibody dynamics. J Comput Nonlinear Dyn 5(3)

    Google Scholar 

  6. Bullo F, Murray RM (1995) Proportional derivative (PD) control on the Euclidean group. CDS technical report 95-010

    Google Scholar 

  7. Crouch PE, Grossman R (1993) Numerical integration of ordinary differential equations on manifolds. J Nonlinear Sci 3(1):1–33

    Article  MATH  MathSciNet  Google Scholar 

  8. Engø K, Faltinsen S (1999) Numerical integration of Lie-Poisson systems while preserving coadjoint orbits and energy. Report in Informatics No. 179, University of Bergen

    Google Scholar 

  9. Engø K, Marthinsen A (2001) A note on the numerical solution of the heavy top equations. Multibody Syst Dyn 5:387–397

    Google Scholar 

  10. Erlicher S, Bonaventura L, Bursi O (2002) The analysis of the generalized- method for non-linear dynamic problems. Comp Mech 28:83–104

    Article  MATH  MathSciNet  Google Scholar 

  11. Hairer E, Lubich C, Wanner G (2003) Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer 12:399–450. doi:10.1017/S0962492902000144

    Article  MATH  MathSciNet  Google Scholar 

  12. Hairer E, Lubich C, Wanner G (2006) Geometric numerical integration. Springer, Berlin

    Google Scholar 

  13. Holm Darryl D (2008) Geometric mechanics. Rotating, translating and rolling, Part II. Imperial College Press, London

    Google Scholar 

  14. Iserles A, Munthe-Kaas HZ (2000) Lie-group methods. Acta Numer 215–365

    Google Scholar 

  15. Krysl P, Endres L (2005) Explicit Newmark/Verlet algorithm for time integration of the rotational dynamics of rigid bodies. Int J Numer Meth Eng 62:2154–2177

    Article  MATH  MathSciNet  Google Scholar 

  16. Krysl P (2005) Explicit momentum-conserving integrator for dynamics of rigid bodies approximating the midpoint Lie algorithm. Int J Numer Methods Eng 63(15):2171–2193

    Article  MATH  MathSciNet  Google Scholar 

  17. Leimkuhler B, Reich S (2004) Simulating hamiltonian dynamics. Cambridge University Press, UK

    Google Scholar 

  18. Lewis D, Simo JC (1994) Conserving algorithms for the dynamics of hamiltonian systems on Lie groups. J Nonlinear Sci 4:253–299

    Article  MATH  MathSciNet  Google Scholar 

  19. Mäkinen J (2001) Critical study of Newmark-scheme on manifold of finite rotations. Comp Methods Appl Eng 191:817–828

    Article  MATH  Google Scholar 

  20. Marsden JE, West M (2001) Discrete mechanics and variational integrators. Acta Numer 357–514

    Google Scholar 

  21. Marsden JE, Ratiu T (1998) Mechanics and symmetry. Springer, New York

    Google Scholar 

  22. Marthinsen A, Munthe-Kaas H, Owren B (1997) Simulation of ordinary differential equations on manifolds—some numerical experiments and verifications. Model Ident Control 18(1):75–88

    Article  MATH  Google Scholar 

  23. Müller A, Terze Z (2014) On the choice of configuration space for numerical Lie group integration of constrained rigid body systems. Int J Comput Appl Math 262:3–13

    Article  Google Scholar 

  24. Müller A, Terze Z (2014) A constraint stabilization method for time integration of constrained multibody systems in lie group setting. In: ASME 2014 international design engineering technical conferences on 9th international conference on multibody systems, 10th nonlinear dynamics, and control (MSNDC), 12–15 Aug 2014, Buffalo, New York

    Google Scholar 

  25. Munthe-Kaas H (1998) Runge Kutta methods on Lie groups. BIT 38(1):92–111

    Article  MATH  MathSciNet  Google Scholar 

  26. Munthe-Kaas H (1999) High order Runge-Kutta methods on manifolds. Appl Numer Math 29:115–127

    Article  MATH  MathSciNet  Google Scholar 

  27. Munthe-Kaas H, Owren B (1999) Computations in a free Lie algebra. Phil Trans R Soc A 357:957–981

    Article  MATH  MathSciNet  Google Scholar 

  28. Murray RM, Li Z, Sastry SS (1993) A mathematical Introduction to robotic manipulation. CRC Press, Boca Raton

    Google Scholar 

  29. Owren B, Marthinsen A (1999) Runge-Kutta methods adapted to manifolds and based in rigid frames. BIT 39:116–142

    Article  MATH  MathSciNet  Google Scholar 

  30. Park J, Chung WK (2005) Geometric integration on Euclidean group with application to articulated multibody systems. IEEE Trans Rob Automat 21(5):850–863

    Article  Google Scholar 

  31. Selig JM (1996) Geometrical methods in robotics. Springer, New York

    Book  MATH  Google Scholar 

  32. Simo JC, Wong KK (1991) Unconditionally stable algorithms for the orthogonal group that exactly preserve energy and momentum. Int J Numer Methods Eng 31:19–52

    Article  MATH  MathSciNet  Google Scholar 

  33. Terze Z, Müller A, Zlatar D (2012) DAE index 1 formulation for multibody system dynamics in Lie-group setting. In: 2nd Joint international conference on multibody system dynamics (IMSD), 29 May–1 June 2012, Stuttgart

    Google Scholar 

  34. Terze Z, Müller A, Zlatar D (2013) Lie-group integration method for constrained multibody systems in state space. Multibody Syst Dyn (submitted)

    Google Scholar 

  35. Terze Z, Müller A, Zlatar D (2014) Modified Störmer-Verlet integration scheme for rotational dynamics in Lie-group setting. ASME J Comput Nonlinear Dyn (submitted)

    Google Scholar 

  36. Zhanhua M, Rowley CW (2009) Lie-Poisson integrators: a hamiltonian, variational approach. Int J Numer Meth Eng. doi:10.1002/nme.2812

Download references

Acknowledgments

The authors thank Dario Zlatar, Ph.D. student at University of Zagreb, for programming part of the numerical experiments presented in the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Müller, A., Terze, Z. (2014). Modelling and Integration Concepts of Multibody Systems on Lie Groups. In: Terze, Z. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-319-07260-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07260-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07259-3

  • Online ISBN: 978-3-319-07260-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics