Skip to main content

Sensitivity Analysis of Multibody Dynamic Systems Modeled by ODEs and DAEs

  • Chapter
  • First Online:
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 35))

Abstract

The optimization of the dynamic response of multibody dynamic systems is a complex and open problem. It relies on using the equations of motion of the system, which amplifies the level of complexity of the problem substantially, compared to other types of optimization. In the context of this kind of optimization, the sensitivity analysis of the dynamic response of the system is a key element. Two main techniques are currently available for the sensitivity analysis of the response of a dynamical system: the direct differentiation method and the adjoint variable method. In this work, different formulations of the equations of motion with dependent coordinates are employed and their sensitivity equations obtained. Direct and adjoint sensitivities are convenient for different types of problems but both methods require accurate derivatives of the equations of motion considered. Both approaches are employed in this work; the direct and adjoint sensitivity equations are obtained for index-3 differential-algebraic equations (DAE), index-1 DAE, and penalty formulations. The adjoint sensitivity for the penalty formulations introduced here is completely novel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and differential-algebraic equations. Soc Ind Appl Math

    Google Scholar 

  2. Brenan KE, Campbell SL, Petzold LR (1989) Numerical solution of initial-value problems in differential-algebraic equations. North-Holland, New York

    MATH  Google Scholar 

  3. Bottasso CL, Dopico D, Trainelli L (2008) On the optimal scaling of index three daes in multibody dynamics. Multibody Sys Dyn 19(1–2):3–20 cited By (since 1996) 7

    Article  MATH  MathSciNet  Google Scholar 

  4. Bauchau OA, Epple A, Bottasso CL (2009) Scaling of constraints and augmented Lagrangian formulations in multibody dynamics simulations. J Comput Nonlinear Dyn 4, 021007. doi:10.1115/1.3079826

  5. Bayo E, García de Jalon J, Serna MA (1988) A modified lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput Methods Appl Mech Eng 71(2):183–195

    Google Scholar 

  6. Bestle D, Seybold J (1992) Sensitivity analysis of constrained multibody systems. Arch Appl Mech 62:181–190

    MATH  Google Scholar 

  7. Cuadrado J, Cardenal J, Morer P, Bayo E (2000) Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and parallel computing environments. Multibody Sys Dyn 4(1):55–73

    Google Scholar 

  8. Cuadrado J, Gutierrez R, Naya MA, Morer P (2001) A comparison in terms of accuracy and efficiency between a mbs dynamic formulation with stress analysis and a non-linear fea code. Int J Numer Methods Eng 51(9):1033–1052

    Article  MATH  Google Scholar 

  9. Ding Jie-Yu, Pan Zhen-Kuan, Chen Li-Qun (2007) Second order adjoint sensitivity analysis of multibody systems described by differential-algebraic equations. Multibody Sys Dyn 18:599–617

    Article  MATH  MathSciNet  Google Scholar 

  10. Dopico D, Zhu Y, Sandu A, Sandu C (2014) Direct and adjoint sensitivity analysis of ODE multibody formulations. J Comput Nonlinear Dyn. doi:10.1115/1.4026492

  11. Eich-Soellner E, Führer C (1998) Numerical Methods in Multibody Dynamics. B.G.Teubner, Stuttgart

    Google Scholar 

  12. Garcia de Jalon J, Bayo E (1994) Kinematic and dynamic simulation of multibody systems: the real-time challenge. Springer, New York

    Google Scholar 

  13. Haug EJ, Arora JS (1979) Applied optimal design: mechanical and structura systems. Wiley, New York

    Google Scholar 

  14. Haug E (1987) Design sensitivity analysis of dynamic systems. Number 27 in NATO ASI series. Series F, computer and systems sciences. In: Computer aided optimal design: structural and mechanical systems, Springer, Berlin

    Google Scholar 

  15. Haug EJ (1989) Computer aided kinematics and dynamics of mechanical systems: basic methods. Allyn and Bacon. Prentice Hall College Div, Boston

    Google Scholar 

  16. Hairer E, Lubich C, Wanner G (2006) Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, vol 31, 2nd edn. Springer, Berlin (Springer Series in Computational Mathematics)

    Google Scholar 

  17. Pagalday JM, Avello A (1997) Optimization of multibody dynamics using object oriented programming and a mixed numerical-symbolic penalty formulation. Mech Mach Theory 32(2):161–174

    Google Scholar 

  18. Pagalday JM (1994) Optimizacion del comportamiento dinamico de mecanismos. PhD thesis, Escuela Superior de Ingenieros Industriales de S. Sebastian

    Google Scholar 

  19. Petzold L, Lötstedt P (1986) Numerical solution of nonlinear differential equations with algebraic constraints ii: practical implications. SIAM J Sci Stat Comput 7(3):720–733

    Article  MATH  Google Scholar 

  20. Sonneville Valentin, Brüls Olivier (2014) Sensitivity analysis for multibody systems formulated on a lie group. Multibody Sys Dyn 31(1):47–67

    Article  Google Scholar 

  21. Schaffer A (2005) Stability of the adjoint differential-algebraic equation of the index-3 multibody system equation of motion. SIAM J Sci Comput 26(4):1432–1448

    Article  MATH  MathSciNet  Google Scholar 

  22. Schaffer A (2006) Stabilized index-1 differential-algebraic formulations for sensitivity analysis of multi-body dynamics. Proc Inst Mech Eng Part K J Multibody Dyn 220(3):141–156

    Google Scholar 

  23. Zhang H, Sandu A (2012) Fatode: a library for forward, adjoint, and tangent linear integration of odes. http://people.cs.vt.edu/~asandu/Software/FATODE/index.html

Download references

Acknowledgments

This work was supported in part by award NSF CMMI-1130667 and by the Computational Science Laboratory at Virginia Tech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Dopico .

Editor information

Editors and Affiliations

Appendix: Nomenclature and Differentiation Rules

Appendix: Nomenclature and Differentiation Rules

  • \(\left( \cdots \right) _0\): means evaluation at the initial time \(\left( \cdots \right) \left( t_0\right) \).

  • \(\left( \cdots \right) _F\): means evaluation at the final time \(\left( \cdots \right) \left( t_F\right) \).

  • \(\mathbf{q} \in {\mathbb {R}}^{n}\): vector of coordinates of the system.

  • \({\varvec{\rho }} \in {\mathbb {R}}^{p}\): vector of parameters.

  • \(\delta \left( \right) \): means variation.

  • \(\left( \right) _\mathbf{q} = \displaystyle \dfrac{\partial \left( \right) }{\partial \mathbf{q}}; \; \left( \right) _{\varvec{\rho }} = \displaystyle \dfrac{\partial \left( \right) }{\partial {\varvec{\rho }}} \)

  • \(\dot{\left( \right) } = \displaystyle \dfrac{\mathrm{d}\left( \right) }{\mathrm{d}t}; \; \ddot{\left( \right) } = \displaystyle \dfrac{\mathrm{d}^2\left( \right) }{\mathrm{d}t^2} \; \left( \right) _{t} = \displaystyle \dfrac{\partial \left( \right) }{\partial t}\)

  • \(\mathbf{M}\left( \mathbf{q},{\varvec{\rho }}\right) \in {\mathbb {R}}^{n \times n}\): generalized mass matrix of the system.

  • \(\mathbf{Q}\left( t,\mathbf{q},\dot{\mathbf{q}},{\varvec{\rho }} \right) \in {\mathbb {R}}^{n}\): vector of generalized forces of the system.

  • \({\varvec{\Phi }}\left( t,\mathbf{q},{\varvec{\rho }} \right) \in {\mathbb {R}}^{m}\): vector of constraints that relate the dependent coordinates.

  • \(\mathbf{A}_\mathbf{x} = \left[ \begin{array}{c c c c c} \displaystyle \frac{\partial \mathbf{A}}{\partial x_1}&\ldots&\displaystyle \frac{\partial \mathbf{A}}{\partial x_i}&\ldots&\displaystyle \frac{\partial \mathbf{A}}{\partial x_{s}} \end{array}\right] \in {\mathbb {R}}^{q{\times }r{\times }s} \). Third order tensor of derivatives of matrix \(\mathbf{A} \in {\mathbb {R}}^{q{\times }r}\) w.r.t. vector \(\mathbf{x} \in {\mathbb {R}}^{s}\).

  • \(\mathbf{A}_\mathbf{x}^\mathrm{T} =\left[ \begin{array}{c c c c c} \displaystyle \frac{\partial \mathbf{A}^\mathrm{T}}{\partial x_1}&\ldots&\displaystyle \frac{\partial \mathbf{A}^\mathrm{T}}{\partial x_i}&\ldots&\displaystyle \frac{\partial \mathbf{A}^\mathrm{T}}{\partial x_{s}} \end{array}\right] \in {\mathbb {R}}^{r{\times }q{\times }s} \).

  • \(\mathbf{A}_\mathbf{x}\mathbf{b} = \mathbf{A}_\mathbf{x}\otimes \mathbf{b} = \left[ \begin{array}{c c c c c} \displaystyle \frac{\partial \mathbf{A}}{\partial x_1} \mathbf{b}&\ldots&\displaystyle \frac{\partial \mathbf{A}}{\partial x_i} \mathbf{b}&\ldots&\displaystyle \frac{\partial \mathbf{A}}{\partial x_{s}} \mathbf{b} \end{array}\right] \in {\mathbb {R}}^{q{\times }s}\), where \(\mathbf{b} \in {\mathbb {R}}^{r}\) is a vector.

  • \(\mathbf{A}_\mathbf{x}\mathbf{B} = \mathbf{A}_\mathbf{x}\otimes \mathbf{B} = \left[ \begin{array}{c c c c c} \displaystyle \frac{\partial \mathbf{A}}{\partial x_1} \mathbf{B}&\ldots&\displaystyle \frac{\partial \mathbf{A}}{\partial x_i} \mathbf{B}&\ldots&\displaystyle \frac{\partial \mathbf{A}}{\partial x_{s}} \mathbf{B} \end{array}\right] \in {\mathbb {R}}^{q{\times }t{\times }s}\), where \(\mathbf{B} \in {\mathbb {R}}^{r{\times }t}\) is a matrix.

  • \(\mathbf{C} \mathbf{A}_\mathbf{x}\mathbf{B} = \mathbf{C} \otimes \mathbf{A}_\mathbf{x}\mathbf{B} = \left[ \begin{array}{c c c c c} \mathbf{C} \displaystyle \frac{\partial \mathbf{A}}{\partial x_1} \mathbf{B}&\ldots&\mathbf{C} \displaystyle \frac{\partial \mathbf{A}}{\partial x_i} \mathbf{B}&\ldots&\mathbf{C} \displaystyle \frac{\partial \mathbf{A}}{\partial x_{s}} \mathbf{B} \end{array}\right] \in {\mathbb {R}}^{r{\times }t{\times }s}\), where \(\mathbf{C} \in {\mathbb {R}}^{r{\times }q}\) is a matrix.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dopico, D., Sandu, A., Sandu, C., Zhu, Y. (2014). Sensitivity Analysis of Multibody Dynamic Systems Modeled by ODEs and DAEs. In: Terze, Z. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-319-07260-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07260-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07259-3

  • Online ISBN: 978-3-319-07260-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics