Skip to main content

Molecular Farming in Plants

  • Chapter
Plant Biotechnology for Health
  • 1473 Accesses

Abstract

Molecular farming can generally be defined as the production of molecules (proteins, fatty acids) for the pharmaceutical and chemical industries in transgenic organisms (plants, animals, etc.).

Molecular farming in plants has advantageous aspects as biosecurity, they do not bear pathogens for humans or animals, and they do not produce toxins. Also, plant protein synthetic machinery is able to produce complex glycosylated proteins as they have a glycosylation pattern with slight difference respect of that of mammals, and can perform foldings.

When displayed in in vitro conditions, molecular farming have the characteristic advantages of that type of culture, mainly the capacity of working under Good Manufactory practices as is required by the pharmaceutical industry. The critical aspects of plants for molecular farming are the different glycosylation patterns respect to mammals, the duration of the productive process, and the relatively low yields.

The approval by the FDA of the first medicine to be used in humans, taliglucerase alfa (ELELYSO®), has give an impulse to this technology but there are some drawbacks to be addressed, particularly related to low yields and regulatory aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abranches R, Marcel S, Arcalis E, Altman F, Fevereiro P, Stoker E (2005) Plants as bioreactors: a comparative study suggests that Medicago trunculata is a promising production system. J Biotechnol 120:121–134

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2012) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30:524–540

    Article  CAS  PubMed  Google Scholar 

  • An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79:568–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Artsaenko O, Ketting B, Fiedler U, Conrad U, Turing K (1998) Potato tubers as a biofactory for recombinant antibodies. Mol Breed 4:313–319

    Article  CAS  Google Scholar 

  • Austin S, Bingham ET, Mathews DE, Shahan MN, Will J, Burgess RR (1995) Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alpha-amylase and manganese-dependent lignin peroxidase. Euphytica 85:381–393

    Article  CAS  Google Scholar 

  • Awale MM, Mody SK, Dudharta GB, Avinash K, Patel HB et al (2012) Transgenic plant vaccine: a breakthrough in immunopharmacotherapeutics. J Vaccines 3(5). http://dx.doi.org/10.4172/2157-7560.1000147

  • Bardor M, Loutelier-Bourhis C, Paccalet T, Cosette P, Fitchette AC et al (2003) Monoclonal C5-1 antibody produced in transgenic alfalfa plants exhibits a N-glycosylation that is homogenous and suitable for glyco-engineering into human-compatible structures. Plant Biotechnol J 1:451–462

    Article  CAS  PubMed  Google Scholar 

  • Bardor M, Cabrera G, Rudd PM, Dwek RA, Cremata JA, Lerouge P (2006) Analytical strategies to investigate plant N-glycan profiles in the context of plant-made pharmaceuticals. Curr Opin Struct Biol 16:576–583

    Article  CAS  PubMed  Google Scholar 

  • Baur A, Reski R, Gorr G (2004) Enhanced recovery of a secreted recombinant human growth factor using stabilizing additives and by co-expression of human serum albumin in the moss Physcomitrella patens. Plant Biotechnol J 3(3):331–340

    Article  CAS  Google Scholar 

  • Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D (2008) Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 6:633–648

    Article  CAS  PubMed  Google Scholar 

  • Bhatla SC, Kaushik V, Yadav MK (2010) Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications. Biotechnol Adv 28:293–300

    Article  CAS  PubMed  Google Scholar 

  • Bock R (2014) Genetic engineering of the chloroplast: novel tools and new applications. Curr Opin Biotechnol 26:7–13

    Article  CAS  PubMed  Google Scholar 

  • Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S et al (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnol J 8:588–606

    Article  CAS  PubMed  Google Scholar 

  • Bosch D, Castillo A, Loos A, Schots A, Steinkellner H (2013) N-glycosylation of plant-produced recombinant proteins. Curr Pharm Des 19:1–10

    Article  CAS  Google Scholar 

  • Bouquin T, Thomson M, Nielsen LK, Green TH, Mundy J, Dziegiel MH (2002) Human anti-rhesus D IgG1 antibody produced in transgenic plants. Transgenic Res 11:115–122

    Article  CAS  PubMed  Google Scholar 

  • Brereton HM, Chamberlain D, Yang R, Tea M, Mcneil S et al (2007) Single chain antibody fragments for ocular use produced at high levels in a commercial wheat variety. J Biotechnol 129:539–546

    Article  CAS  PubMed  Google Scholar 

  • Brodzik R, Bandurska K, Deka D, Golovkin M, Koprowski H (2005) Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta. Biochem Biophys Res Commun 338:717–722

    Article  CAS  PubMed  Google Scholar 

  • Brodzik R, Spitsin S, Pogrebnyak N, Bandurska K, Portocarrero C, Andryszak Koprowski H, Golovkin M (2009) Generation of plant-derived recombinant DTP subunit vaccine. Vaccine 27:3730–3734

    Article  CAS  PubMed  Google Scholar 

  • Buntru M, Gärtner S, Staib L, Kreuzaler F, Schalaich N (2013) Delivery of multiple transgenes to plant cells by an improved version of MultiRound Gateway technology. Transgenic Res 22:153–167

    Article  CAS  PubMed  Google Scholar 

  • Cañizares MC, Nicholson L, Lomonossoff GP (2005) Use of viral vectors for vaccine production in plants. Immunol Cell Biol 83:263–270

    Article  PubMed  CAS  Google Scholar 

  • Cary JW, Rajasekaran K, Jaynes JM, Cleveland TE (2000) Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci 154:171–181

    Article  CAS  PubMed  Google Scholar 

  • Castilho A, Gattinger P, Grass J, Jez J, Pabst M et al (2011) N-Glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology 21(6):813–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castilho A, Neumann L, Daskalova S, Mason HS, Steinkellner H, Altman F, Strasser R (2012) Engineering of sialylated mucin-type O-glycosylation in plants. J Biol Chem 287(43):36518–36526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cerovská N, Hoffmeisterová H, Pecenková T, Moravec T, Synková H, Plochová H, Velemínsky J (2008) Transient expression of HPV16 E7 peptide (aa 44–60) and HPV16 L2 peptide (aa 108–120) on chimeric potyvirus-like particles using Potato virus X-based vector. Protein Expr Purif 58:154–161

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary S, Parmenter DL, Moloney MM (1998) Transgenic Brassica carinata as a vehicle for the production of recombinant proteins in seeds. Plant Cell Rep 17:195–200

    Article  CAS  Google Scholar 

  • Chen QJ, Zhou HM, Chen J, Wang XC (2006) A gateway-based platform for multigene plant transformation. Plant Mol Biol 62:927–936

    Article  CAS  PubMed  Google Scholar 

  • Cheo DL, Titus SA, Byrd DR, Hartley JL, Temple GF, Brasch MA (2004) Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination. Functional analysis of multi-segment expression clones. Genome Res 14:2111–2120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chikwamba RK, Scott MP, Mejia LB, Mason HS, Wang K (2003) Localization of a bacterial protein in starch granules of transgenic maize kernels. Proc Natl Acad Sci U S A 100:11127–11132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chou KC, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant proteína subcellular localization. PLoS One 5:e11335

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chowdhury K, Bagasra O (2007) An edible vaccine for malaria using transgenic tomatoes of varying sizes, shapes and colors to carry different antigens. Med Hypotheses 68:22–30

    Article  CAS  PubMed  Google Scholar 

  • Circelli P, Donini MM, Villani ME, Benvenuto E, Marusic C (2010) Efficient Agrobacterium-based transient expression system for the production of biopharmaceuticals in plants. Bioeng Bugs 1(3):221–224

    Google Scholar 

  • Clarke JL, Daniell H, Nugent JM (2011) Chloroplast biotechnology, genomics and evolution: current status, challenges and future directions. Plant Mol Biol 76:207–209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cramer CL, Weissenborn DL, Oishi KK, Grabau EA, Bennett S et al (1996) Bioproduction of human enzymes in transgenic tobacco. Ann NY Acad Sci 792:62–71

    Article  CAS  PubMed  Google Scholar 

  • Cunha NB, Murad AM, Cipriano TM, Araújo ACG, Aragao FJL, Leite A et al (2011a) Expression of functional recombinant human growth hormone in transgenic soy-bean seeds. Transgenic Res 20:811–826

    Article  CAS  PubMed  Google Scholar 

  • Cunha NB, Murad AM, Ramos GL, Maranhao AQ, Brígido MM et al (2011b) Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds. Transgenic Res 20:841–855

    Article  CAS  PubMed  Google Scholar 

  • D’Aoust MA, Lerouge P, Busse U, Bilodeau P, Trepanier S et al (2004) Efficient and reliable production of pharmaceuticals in alfalfa. In: Fischer R, Schillberg S (eds) Molecular farming. Wiley-VCH, Weinheim, pp 1–12

    Google Scholar 

  • D’Aoust MA, Couture MJ, Charland N, Trépanier S, Landry N, Ors F, Vezina LP (2010) The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J 8:607–619

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Expression of the native cholera of toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311:1001–1009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779–1783

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Singh ND, Mason H, Streatfield J (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14(12):669–679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daskalova SM, Radder JE, Cichacz ZA, Olsen SH, Tsaprailis G, Mason H, López LC (2010) Engineering of N. benthamiana L. plants for production of N-acetylgalactosamine-glycosylated proteins – towards development of a plant-based platform for production of protein therapeutics with mucin type O-glycosylation. BMC Biotechnol 10:62, http://www.biomedcentral.com/1472-6750/10/62

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Davies HM (2010) Commercialization of whole-plant systems for biomanufacturing of protein products: evolution and prospects. Plant Biotechnol J 8:845–861

    Article  PubMed  Google Scholar 

  • Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553. doi:10.1111/j.1467-7652.2011.00604.x

    Article  CAS  PubMed  Google Scholar 

  • de la Riva GA, González-Cabrera J, Vázquez-Padrón R, Ayra-Pardo C (1998) Agrobacterium tumefaciens: a natural tool for plant transformation. Electron J Biotechnol 1(3):118–131

    Article  Google Scholar 

  • De Muynck B, Navarre C, Nizet Y, Stadlmann J, Boutry M (2009) Different subcellular localization and glycosylation for a functional antibody expressed in Nicotiana tabacum plants and suspension cells. Transgenic Res 18:467–482

    Article  CAS  PubMed  Google Scholar 

  • De Muynck B, Navarre C, Boutry M et al (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8:529–563

    Article  PubMed  CAS  Google Scholar 

  • De Neve M, De Loose M, Jacobs A, Van Houdt H et al (1993) Assembly of an anti-body and its derived antibody fragment in Nicotiana and Arabidopsis. Transgenic Res 2:227–237

    Article  PubMed  Google Scholar 

  • De Wilde C, Peeters K, Jacobs A, Peck I, Depicker A (2002) Expression of antibodies and Fab fragments in transgenic potato plants: a case study for bulk production in crop plants. Mol Breed 9:271–282

    Article  Google Scholar 

  • Deckers HM, Van Rooijen G, Boothe J, Goll J, Moloney MM, Schryvers AB et al (2004) Sembiosys Genetics Inc. Immunogenic formulations comprising oil bodies. United States patent US 6761914

    Google Scholar 

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  CAS  PubMed  Google Scholar 

  • Doran PM (2000) Foreign protein production in plant tissue cultures. Curr Opin Biotechnol 11:199–204

    Article  CAS  PubMed  Google Scholar 

  • Doran PM (2006a) Foreign protein degradation and instability in plants and plant tissue cultures. Trends Biotechnol 24(9):426–432

    Article  CAS  PubMed  Google Scholar 

  • Doran PM (2006b) Loss of secreted antibody from transgenic plant tissue cultures due to surface adsorption. J Biotechnol 122:39–54

    Article  CAS  PubMed  Google Scholar 

  • Dorokhov YL, Skulachev MV, Ivanov PA, Zvereva SD, Tjulkina LG et al (2002) Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry. Proc Natl Acad Sci U S A 99:5301–5306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dorokhov YL, Sheveleva AA, Frolova OY, Komarova TV, Zvereva AS et al (2007) Superexpression of tuberculosis antigens in plant leaves. Tuberculosis 87:218–224

    Article  CAS  PubMed  Google Scholar 

  • Eeckhout D, De Clerq A, Van De Slijke E, Van Leene J, Stans H, Castells P et al (2004) A technology platform for the fast production of monoclonal recombinant antibodies against plant proteins and peptides. J Immunol Methods 294:181–187

    Article  CAS  PubMed  Google Scholar 

  • Egelkrout E, Rajan V, Howard JA (2012) Overproduction of recombinant proteins in plants. Plant Sci 184:83–101

    Article  CAS  PubMed  Google Scholar 

  • Faye L, Boulaflous A, Benchabane M, Gomord V, Michaud D (2005) Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 23:1770–1778

    Article  CAS  PubMed  Google Scholar 

  • Fernández-San Millán A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1:71–79

    Article  PubMed  Google Scholar 

  • Fischer R, Twtman RM, Schillberg S (2003) Production of antibodies in plants and their use for global health. Vaccine 21:820–825

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twymann RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    Article  CAS  PubMed  Google Scholar 

  • Floss DM, Schallau KM, Rose-John S, Conrad U, Scheller J (2009) Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol 28(1):37–45

    Article  PubMed  CAS  Google Scholar 

  • Franconi R, Demurtas OC, Massa S (2010) Plant-derived vaccines and other therapeutics produced in contained systems. Expert Rev Vaccines 9(8):877–892

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara Y, Aiki Y, Yang L, Takaiwa F, Kosaka A, Tsuji NM, Shiraki K, Sekikawa K (2010) Extraction and purification of human interleukin-10 from transgenic rice seeds. Protein Expr Purif 72:125–130

    Article  CAS  PubMed  Google Scholar 

  • Fukuzawa N, Tabayashi N, Okinaka Y, Furusawa R, Furuta K, Kagaya U, Matsumura T (2010) Production of biologically active Atlantic salmon interferon in transgenic potato and rice plants. J Biosci Bioeng 110:201–207

    Article  CAS  PubMed  Google Scholar 

  • Galeffi P, Lombardi A, Di Donato M, Latini A, Sperandei M, Cantale C, Giacomini P (2005) Expression of single-chain antibodies in transgenic plants. Vaccine 23:1823–1827

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Ma Y, Li M, Cheng T, Li SW, Zhang J, Xia NS (2003) Oral immunization of animals with transgenic cherry tomatillo expressing HBsAg. World J Gastroenterol 9:996–1002

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Hooker BS, Anderson DB (2004) Expression of functional human coagulation factor XIII A-domain in plant cell suspensions and whole plants. Protein Expr Purif 37:89–96

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Li Y, Xue X, Wang X, Long J (2012) Stable plastid transformation for high-level recombinant protein expression: promises and challenges. J Biomed Biotechnol, Article ID 158232, 16 pp. doi:10.1155/2012/158232

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the Biology behind the “Gene-Jockeying” tool. Microbiol Mol Biol Rev 67(1):16–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giorgi C, Franconi R, Rybicki E (2010) Human papillomavirus vaccines in plants. Expert Rev Vaccines 9(8):913–924

    Article  CAS  PubMed  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonet S (2005) Magnifection – a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042–2048

    Article  CAS  PubMed  Google Scholar 

  • Gomord V, Faye L (2004) Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7:171–181

    Article  CAS  PubMed  Google Scholar 

  • Gomord V, Denmat LA, Fitchette AC, Satiat-Jeunemaître B, Hawes C, Faye L (1997) The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant J 11:313–325

    Article  CAS  PubMed  Google Scholar 

  • Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8:564–587

    Article  CAS  PubMed  Google Scholar 

  • Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268:714–716

    Article  CAS  PubMed  Google Scholar 

  • Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific re-combination. Genome Res 10:1788–1795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hellens RP, Edwards EA, Lelyland NR, Bean S, Mullineaux PM (2000) pGREEN: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant trans-formation. Plant Mol Biol 42:819–832

    Article  CAS  PubMed  Google Scholar 

  • Hellwig S, Drossard J, Twyman R, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22(11):1414–1422

    Article  CAS  Google Scholar 

  • Herrera-Estrella L, Depicker A, Van Montagu M, Scholl J (1983) Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213

    Article  CAS  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78

    Article  CAS  PubMed  Google Scholar 

  • Hong SH, Kim KI, Chung HY, Kim YJ, Sunter G, Bisaro DM, Chung IS (2004) Expression of recombinant endostatin in Agrobacterium-inoculated leaf disks of Nicotiana tabacum var. Xanthi. Biotechnol Lett 26:1433–1439

    Article  CAS  PubMed  Google Scholar 

  • Hood EE (2002) From green plants to industrial enzymes. Enzyme Microb Technol 30:279–283

    Article  CAS  Google Scholar 

  • Hood EE, Woodard SL, Horn ME (2002) Monoclonal antibody manufacturing in transgenic plants – myths and realities. Curr Opin Biotechnol 13:630–635

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Mason HS (2004) Conformational analysis of hepatitis B surface antigen fusions in an Agrobacterium-mediated transient expression system. Plant Biotechnol J 2:241–249

    Article  CAS  PubMed  Google Scholar 

  • James E, Mills DR, Lee JM (2002) Increased production and recovery of secreted foreign proteins from plant cell cultures using an affinity chromatography bioreactor. Biochem Eng J 12:205–213

    Article  CAS  Google Scholar 

  • Jeffrey MS, Garcia B, Graves J, Hajdukiewicz PTJ, Hunter P et al (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

    Article  CAS  Google Scholar 

  • Joshi L, López LC (2005) Bioprospecting in plants for engineered proteins. Curr Opin Plant Biol 8:223–226

    Article  CAS  PubMed  Google Scholar 

  • Kaldis A, Ahmad A, Reid A, Mcgarvey B, Brandle J, Ma S et al (2013) High-level production of human interleukin-10 fusions in tobacco cell suspension cultures. Plant Biotechnol J 11:535–545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Karimi J, Inzé D, Depicker A (2002) GATEWAY® vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7(5):193–195

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, De Meyer B, Hilson P (2005) Modular cloning in plant cells. Trends Plant Sci 10:103–105

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, Depicker A, Hilson P (2007) Recombinational cloning with plant gateway-vectors. Plant Physiol 145(4):1144–1154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Kwon TH, Sik YM (2004) Direct transfer and expression of human GM-CSF in tobacco suspension cell using Agrobacterium-mediated transfer system. Plant Cell Tiss Org Cult 78:133–138

    Article  CAS  Google Scholar 

  • Komarnytsky S, Borisjuk N, Yakoby N, Garvey A, Raskin I (2006) Co-secretion of protease inhibitor stabilizes antibodies produced by plant roots. Plant Physiol 141:1185–1193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kong Q, Richter L, Yang YF, Arntzen CJ, Mason HS, Thanavala Y (2001) Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc Natl Acad Sci U S A 98:11539–11544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koprivova A, Stemmer C, Altman F, Hoffmann A, Kopriva S, Gorr G, Reiki R, Decker EL (2004) Targeted knockouts of Physcomitrella lacking plant-specific immunogenics N-glycans. Plant Biotechnol J 2:517–523

    Article  CAS  PubMed  Google Scholar 

  • Kostrzak A, Gonzalez MC, Guetard D, Nagaraju DB, Hobson SW, Tepfer D, Pniewski T, Ala M (2009) Oral administration of low doses of plant based HBsAg induced antigen specific IgAs and IgGs in mice, without increasing levels of regulatory T cells. Vaccine 27:4798–4807

    Article  CAS  PubMed  Google Scholar 

  • Landry N, Trépanier S, Montomoli E, Dargis M, Papini G, Vézina LP (2010) Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS One 5(12):e15559. doi:10.1371/journal.pone.0015559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larrick JW, Yu L, Naftzger C, Jaiswal S, Wycoff K (2001) Production of secretory IgA antibodies in plants. Biomol Eng 18:87–94

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kim NS, Kwon TH, Yang MS (2002) Effects of osmotic pressure on production of recombinant human granulocyte-macrophage colony stimulating factor in plant cell suspension culture. Enzyme Microb Technol 30:768–773

    Article  CAS  Google Scholar 

  • Lei H, Qi J, Song J, Yang D, Wang Y, Zhang Y, Yang J (2006) Biosynthesis and bio-activity of trichosanthin in cultured crown gall Maximowicz. Plant Cell Rep 25:1205–1212

    Article  CAS  PubMed  Google Scholar 

  • Lerouge P, Nardor M, Lagny S, Gomord V, Faye L (2000) N-glycosylation of recombinant pharmaceutical glycoproteins produced in glycoproteins produced in transgenic plants: towards an humanisation of plant N-glycans. Curr Pharm Biotechnol 1:347–354

    Article  CAS  PubMed  Google Scholar 

  • Lienard D, Tran Dinh O, Van Oort E, Van Overtvelt L, Bonneau C et al (2007) Suspension-cultured BY-2 tobacco cells produce and mature immunologically active house dust mite allergens. Plant Biotechnol J 5:93–108

    Article  CAS  PubMed  Google Scholar 

  • Ling H (2007) Oleosin fusion expression systems for the production of recombinant proteins. Biologia 62:119–123

    Article  CAS  Google Scholar 

  • López J, Lencina F, Petruccelli S, Marconi P, Alvarez MA (2010) Influence of the KDEL signal, DMSO and mannitol on the production of the recombinant antibody 14D9 by long-term Nicotiana tabacum cell suspension culture. Plant Cell Tiss Org Cult 103:307–314

    Article  CAS  Google Scholar 

  • Ma JKC, Hein M (1995) Immunotherapeutic potential of antibodies produced in plants. Trends Biotechnol 13:522–527

    Article  CAS  PubMed  Google Scholar 

  • Ma KC, Hikmat BY, Wicoff K, Vine ND, Chargelegue D et al (1998) Characterization of a recombinant plant monoclonal antibody and preventive immunotherapy in humans. Nat Med 4(5):601–606

    Article  CAS  PubMed  Google Scholar 

  • Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  CAS  PubMed  Google Scholar 

  • Magnani E, Bartling L, Hake S (2006) From gateway to MultiSite gateway in one re-combination event. BMC Mol Biol 7:46

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Magnuson NS, Linzmaier PM, Gao JW, Reeves R, An G, Lee JM (1996) Enhanced recovery of secreted mammalian protein from suspension culture of genetically modified tobacco cells. Protein Expr Purif 7:220–228

    Article  CAS  PubMed  Google Scholar 

  • Magnuson NS, Linzmaier PM, Reeves R, An G, Hayglass K, Lee JM (1998) Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr Purif 13:45–52

    Article  CAS  PubMed  Google Scholar 

  • Marconi PL, Alvarez MA (2014) State of the art on plant-made single-domain antibodies. J Immunol Tech Infect Dis 3:2. doi: 10.4172/2329-9541.1000125

  • Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci U S A 101:5852–5857

    Article  Google Scholar 

  • Markley N, Nykiforuk C, Moloney MM (2006) Producing proteins using transgenic oilbody-oleosin technology. Biopharm Int 19:6

    Google Scholar 

  • Martínez-González L, Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, López-Reviña R et al (2011) Oral immunization with a lettuce-derived Escherichia coli heat-labile toxin B subunit induces neutralizing antibodies in mice. Plant Cell Tiss Org Cult 107:441–449

    Article  CAS  Google Scholar 

  • Mascia PN, Flavell RB (2004) Safe and acceptable strategies for producing foreign molecules in plants. Curr Opin Plant Biol 7:189–195

    Article  CAS  PubMed  Google Scholar 

  • Mason HS, Arntzen CJ (1995) Transgenic plants as vaccine production systems. Trends Biotechnol 13(9):388–392

    Article  CAS  PubMed  Google Scholar 

  • Mason HS, Warzecha H, Mor T, Arntzen CJ (2002) Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol Med 8(7):324–329

    Article  CAS  PubMed  Google Scholar 

  • Matsuda R, Kubota C, Alvarez ML, Cardineau GA (2009) Biopharmaceutical protein production under controlled environments: growth, development, and vaccine productivity of transgenic tomato plants grown hydroponically in a greenhouse. HortScience 44(6):1594–1599

    Google Scholar 

  • Matsumoto Y, Suzuki S, Nozoye T, Yamakawa T, Takashima Y et al (2009) Oral immunogenicity and protective efficacy in mice of transgenic rice plants producing a vaccine candidate antigen (As16) of Ascaris suum fused with cholera toxin B subunit. Transgenic Res 18:185–192

    Article  CAS  PubMed  Google Scholar 

  • Mayani M, Filipe CDM, Mclean MD, Hall JC, Ghosh R (2013) Purification of transgenic tobacco-derived recombinant human monoclonal antibody. Biochem Eng J 72:33–41

    Article  CAS  Google Scholar 

  • Mcdonald KA, Hong LM, Trombly DM, Xie Q, Jackman AP (2005) Production of human alpha 1-antitrypsin from transgenic rice cell culture in a membrane bioreactor. Biotechnol Prog 21:728–734

    Article  CAS  PubMed  Google Scholar 

  • Medina-Bolivar F, Cramer C (2004) Production of recombinant proteins by hairy roots cultured in plastic sleeve bioreactors. Methods Mol Biol 267:351–363

    Google Scholar 

  • Medina-Bolivar F, Wright R, Funk V, Sentz D, Barroso L et al (2003) A non-toxic lectin for antigen delivery of plant-based mucosal vaccines. Vaccine 21(9):997–1005

    Article  CAS  PubMed  Google Scholar 

  • Medrano G, Reidy MJ, Liu J, Ayala J, Dolan MC, Cramer CL (2009) Rapid system for evaluating bioproduction capacity of complex pharmaceutical proteins in plants. Methods Mol Biol 483:51–67

    Article  CAS  PubMed  Google Scholar 

  • Menassa R, Nguyen V, Jevnikar A, Brandle J (2001) A self-contained system for the field production of plant recombinant interleukin-10. Mol Breed 8:177–185

    Article  CAS  Google Scholar 

  • Michaud D, Vrain TC, Gomord V, Faye L (1998) Stability of recombinant proteins in plants. Methods Biotechnol 3:177–188

    Article  CAS  Google Scholar 

  • Michaud D, Anguenot R, Brunelle F (2005) Method for increasing protein content in plant cells. US Patent application 2005/0055746

    Google Scholar 

  • Moloney MM, Van-Rooijen G (2006) Sembiosys Genetics Inc. Expression of epidermal growth factor in plant seeds. United States patent US 7332587

    Google Scholar 

  • Nygren PA, Stahl S, Uhlén M (1994) Engineering proteins to facilitate bioprocessing. Trends Biotechnol 12:181–188

    Article  Google Scholar 

  • Nykiforuk CL, Boothe JG, Murray EW, Keon RG, Goren J, Markley NA et al (2006) Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol J 4:77–85

    Google Scholar 

  • Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222

    Article  PubMed  Google Scholar 

  • Parmenter DL, Boothe JG, Van Rooijen GJH, Yeung EC, Moloney MM (1995) Production of biologically active hirudin in plants seeds using oleosin partitioning. Plant Mol Biol 29:1167–1180

    Article  CAS  PubMed  Google Scholar 

  • Paul M, Ma JKC (2011) Plant-made pharmaceuticals: leading products and production plat-forms. Biotechnol Appl Biochem 58:58–67

    Article  CAS  PubMed  Google Scholar 

  • Peter RE, Yu KL, Marchant TA, Rosenblum PM (1990) Direct neural regulation of the teleost adenohypophysis. J Exp Zool 4:84–89

    Article  Google Scholar 

  • Raju TS, Briggs JB, Chamow SM, Winkler ME, Jones AJ (2001) Glycoengineering of therapeutic glycoproteins: in vitro galactosylation and sialylation of glycoproteins with terminal N-acetylglucosamine and galactose residues. Biochemistry 40:8868–8876

    Article  CAS  PubMed  Google Scholar 

  • Ramessar K, Sabalza M, Capell T, Christou P (2008) Maize plants: an ideal production platform for effective and safe molecular pharming. Plant Sci 174:409–419

    Article  CAS  Google Scholar 

  • Ramessar K, Rademachar T, Sack M, Stadlmann J, Platis D et al (2009) Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proc Natl Acad Sci USA 105(10):3727–3732

    Article  Google Scholar 

  • Sainsbury F, Lomonossoff GP (2008) Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol 148:1212–1218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scheller J, Henggeler D, Viviani A, Conrad U (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 13:51–57

    Article  CAS  PubMed  Google Scholar 

  • Seddas-Dozolme P, Walter B, Van Regenmortel MHV (1999) Introduction: antigens, antibodies and plantibodies. In: Harper K, Ziegler A (eds) Recombinant anti-bodies. Applications in plant science and plant pathology. Taylor & Francis, London, pp 3–21

    Google Scholar 

  • Sharma AK, Sharma MK (2009) Plants as bioreactors: recent developments and emerging opportunities. Biotechnol Adv 27:811–832

    Article  CAS  PubMed  Google Scholar 

  • Sheludko YV (2008) Agrobacterium-mediated transient expression as an approach to production of recombinant proteins in plants. Recent Pat Biotechnol 2:198–208

    Article  CAS  PubMed  Google Scholar 

  • Singer SD, Hily JM, Liu Z (2010) A1-kb Bacteriophage lambda fragment functions as an insulator to effectively block enhancer–promoter interactions in Arabidopsis thaliana. Plant Mol Biol Rep 28(1):69–76

    Google Scholar 

  • Soderquist RG, Lee JM (2005) Enhanced production of recombinant proteins from plant cells by the application of osmotic stress and protein stabilization. Plant Cell Rep 24:127–132

    Article  CAS  PubMed  Google Scholar 

  • Stahl S, Nygren PA, Uhlén M (1997) Detection and isolation of recombinant proteins based on binding affinity of reporter: protein A. Methods Mol Biol 63:103–118

    CAS  PubMed  Google Scholar 

  • Staub JM, García B, Graves J, Hajdukiewicz PT, Hunter P et al (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18(3):333–338

    Article  CAS  PubMed  Google Scholar 

  • Stoger E, Ma JK, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173

    Article  CAS  PubMed  Google Scholar 

  • Streatfield SJ, Howard JA (2003) Plant-based vaccines. Int J Parasitol 33:479–493

    Article  CAS  PubMed  Google Scholar 

  • Sugio T, Satoh J, Matsuura H, Shinmyo A, Ato K (2008) The 5′-untranslated region of the Oryza sativa alcohol dehydrogenase gene functions as a translational enhancer in monocotyledonous plant cells. J Biosci Bioeng 105:300–302

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Kimura T, Hikino K, Goto S, Nishimura M et al (2012) Gateway vectors for plant genetic engineering: overview of plant vectors, application for Bimolecular Fluorescence Complementation (BiFC) and multigene construction. In: Barrera-Saldaña HA (ed) Genetic engineering – basics, new applications and responsibilities. InTech Open Acces, Croatia, pp 35–58

    Google Scholar 

  • Terashima M, Murai Y, Kawamura M, Nakanishi S, Stoltz T, Chen L, Drohan W, Rodríguez RL, Katoh S (1999) Production of human α1-antitrypsin by plant cell culture. Appl Microbiol Biotechnol 52:516–523

    Article  CAS  PubMed  Google Scholar 

  • Thanavala Y, Mahoney M, Pal S, Scott A, Richter L et al (2005) Immunogenicity in humans of an edible vaccine for hepatitis B. Proc Natl Acad Sci U S A 102:3378–3382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas BR, Van Deynze A, Bradford KJ (2002) Production of therapeutic proteins in plants. Agricultural Biotechnology in California Series, University of California, Agriculture and Natural Resources, Oakland, pp 1–12

    Google Scholar 

  • Thyssen G, Svab Z, Maliga P (2012) Exceptional inheritance of plastids via pollen in Nicotiana sylvestris with no detectable paternal mitochondrial DNA in the progeny. Plant J 72:84–88

    Article  CAS  PubMed  Google Scholar 

  • Tregoning J, Maliga P, Dougan G, Nixon PJ (2004) New advances in the production of edible plant vaccines: chloroplast expression of a tetanus vaccine antigen, TetC. Phytochemistry 65:989–994

    Article  CAS  PubMed  Google Scholar 

  • Tremblay R, Wang D, Jevnikar AM, Ma S (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28:214–221

    Article  CAS  PubMed  Google Scholar 

  • Twymann RM, Soger E, Schillbeg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21(12):570–578

    Article  CAS  Google Scholar 

  • Verch T, Yusibov V, Koprowski H (1998) Expression and assembly of a full-length monoclonal antibody in plants using a plant virus vector. J Immunol Methods 220:69–75

    Article  CAS  PubMed  Google Scholar 

  • Walmsley AM, Arntzen CJ (2003) Plant cell factories and mucosal vaccines. Curr Opin Biotechnol 14:145–150

    Article  CAS  PubMed  Google Scholar 

  • Watson J, Koya V, Leppla SH, Daniell H (2004) Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine 22:4374–4384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weathers PJ, Giles KL (1988) Regeneration of plants using nutrient mists. In Vitro Cell Dev Biol Plant 24:727–732

    Article  Google Scholar 

  • Whaley KJ, Hiatt A, Zeltlin L (2011) Emerging antibody products and Nicotiana manufacturing. Hum Vaccin 7(3):349–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wongsamuth R, Doran PM (1997) Production of monoclonal antibodies by tobacco hairy roots. Biotechnol Bioeng 54:401–415

    Article  CAS  PubMed  Google Scholar 

  • Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT et al (2003) Maize (Zea mays) derived bovine trypsin: characterization of the first large scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38:123–130

    Article  CAS  PubMed  Google Scholar 

  • Woods RR, Geyer BC, Mor TS (2008) Hairy-root organ cultures for the production of human acetylcholinesterase. BMC Biotechnol 8:95. doi:10.1186/1472-6750-8-95

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu J, Dolan MC, Medrano G, Carol CL, Weathers PJ (2012) Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 30:1171–1184

    Article  CAS  PubMed  Google Scholar 

  • Yusibov VM, Mamedov TG (2010) Plants as an alternative system for expression of vaccine antigens. Proc ANAS (Biol Sci) 65(5–6):195–200

    Google Scholar 

  • Zhang H, Liu M, Li Y, Zhao Y, He H, Yang G, Zheng C (2010) Oral immunogenicity and protective efficacy in mice of a carrot-derived vaccine candidate expressing UreB subunit against Helicobacter pylori. Protein Expr Purif 69:127–131

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alvarez, M.A. (2014). Molecular Farming in Plants . In: Plant Biotechnology for Health. Springer, Cham. https://doi.org/10.1007/978-3-319-05771-2_6

Download citation

Publish with us

Policies and ethics