Skip to main content

Green Synthesized CdSe Quantum Dots Capped by 3-Mercaptopropionic Acid Sensitized Solar Cells

  • Conference paper
  • First Online:
International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 155))

Abstract

In this paper, the green synthesized CdSe quantum dots (QDs) capped by 3-mercaptopropionic acid (MPA) sensitized solar cells are fabricated. Glycerol is chosen as the solvent to prepare the CdSe QDs, which makes the whole reaction is environmental-friendly. After MPA ligand exchanging, the as-synthesized CdSe QDs maintain the original absorbance at ca. 500 nm, coherence to the maximum absorbance of the solar spectrum. The strong photoluminescence quenching of the MPA capped QDs increases the nonradiative decay processes and is beneficial to the electron transfer. Then the MPA ligand exchanged QDs were assembled onto mesoscopic TiO2 film to integrate into QD sensitized solar cells. The power conversion efficiency of the QD-sensitized solar cells reaches 0.12 % under sun illumination (AM 1.5, 100 mW cm−2) and relatively mechanism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Hwang, J.H. Lee, C. Park, H. Lee, C. Kim, C. Park, M.-H. Lee, W. Lee, J. Park, K. Kim, N.-G. Park, C. Kim, A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun. 4887–4889 (2007)

    Google Scholar 

  2. L.M. Peter, D.J. Riley, E.J. Tull, K.G. Upul Wijayantha, Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. Chem. Commun. 1030–1031 (2002)

    Google Scholar 

  3. Y.-L. Lee, Y.-S. Lo, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)

    Article  Google Scholar 

  4. S.-C. Lin, Y.-L. Lee, C.-H. Chang, Y.-J. Shen, Y.-M. Yang, Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Appl. Phys. Lett. 90, 143517 (2007)

    Article  ADS  Google Scholar 

  5. I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128, 2385–2393 (2006)

    Google Scholar 

  6. I. Shin, H. Seo, M.-K. Son, J.-K. Kim, H. Kim, Characteristic of (Pb1-xZnx)S tandem structured quantum dot-sensitized solar cell having wide light absorbance. Phys. Status Solidi C. 8, 631–633 (2011)

    Google Scholar 

  7. R.D. Schaller, V.M. Agranovich, V.I. Klimov, High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nat. Phys. 1, 189–194 (2005)

    Article  Google Scholar 

  8. R.D. Schaller, V.I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (1–4) (2004)

    Google Scholar 

  9. X. Ma, Y. Shen, Q. Wu, T. Shen, M. Cao, F. Gu, L. Wang, Free-standing TiO2 nanotube arrays for front-side illuminated CdS quantum dots sensitized solar cells. J. Inorg. Organomet. Polym. 23, 798–802 (2013)

    Google Scholar 

  10. J.L. Blackburn, D.C. Selmarten, R.J. Ellingson, M. Jones, O. Micic, A.J. Nozik, Electron and hole transfer from indium phosphide quantum dots. J. Phys. Chem. B, 109(7), 2625–2631 (2005)

    Google Scholar 

  11. A.J. Nozik, Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Inorg. Chem. 44, 6893 (2005)

    Google Scholar 

  12. W. Zhang, H. Zhang, Y. Feng, X. Zhong, Scalable single-step noninjection synthesis of high-quality core/shell quantum dots with emission tunable from violet to near infrared. Nano Lett. 6(12), 11066–11073 (2012)

    Google Scholar 

  13. L. Liu, Q. Peng, Y. Li, Preparation of CdSe quantum dots with full color emission based on a room temperature injection technique. Inorg. Chem. 47, 5022–5028 (2008)

    Google Scholar 

  14. X. Chen, J.L. Hutchison, P.J. Dobson, G. Wakefield, Highly luminescent monodisperse CdSe nanoparticles synthesized in aqueous solution. J. Mater. Sci. 44, 285–292 (2009)

    Article  ADS  Google Scholar 

  15. D.S. Ginger, N.C. Greenham, Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. J. Appl. Phys. 87, 1361 (2000)

    Google Scholar 

  16. A.J Nozik, Quantum dot solar cells. Phys. E 14,115–120 (2002)

    Google Scholar 

  17. J. Seo, W.J. Kim, S.J. Kim, K.S. Lee, A.N. Cartwright, P.N. Prasad, Polymer nanocomposite photovoltaics utilizing CdSe nanocrystals capped with a thermally cleavable solubilizing ligand. Appl. Phys. Lett. 94, 133302 (2009)

    Article  ADS  Google Scholar 

  18. N.C. Greenham, X. Peng, A.P. Alivisatos, CdSe nanocrystal rods/poly (3-hexylthiophene) composite photovoltaic devices. Phys. Rev. B, 54, 17628 (1996)

    Google Scholar 

  19. R.G. Pearson, Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533 (1963)

    Google Scholar 

  20. J.D. Olson, G.P. Gray, S.A. Carter, Optimizing hybrid photovoltaics through annealing and ligand choice. Solar Energy Mater. Solar Cells. 93, 519–523 (2009)

    Google Scholar 

  21. B. Sun, N.C. Greenham, Improved efficiency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers. Phys. Chem. Chem. Phys. 8, 3557 (2006)

    Google Scholar 

  22. B. Sun, H.J. Snaith, A.S. Dhoot, S. Westenhoff, N.C. Greenham, Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. J. Appl. Phys. 97, 014914 (2005)

    Google Scholar 

  23. I. Gur, N.A. Fromer, C. Chen, A.G. Kanaras, A.P. Alivisatos, Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Lett. 7, 409 (2007)

    Article  ADS  Google Scholar 

  24. W.U. Huynh, J.J. Dittmer, W.C. Libby, G.L. Whiting, A.P. Alivisatos, Controlling the morphology of nanocrystal-polymer composites for solar cells. Adv. Funct. Mater. 13, 73 (2003)

    Google Scholar 

  25. C.H. Chang, Y.L. Lee, Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Appl. Phys. Lett. 91, 053503 (2007)

    Article  ADS  Google Scholar 

  26. P. Yu, K. Zhu, A.G. Norman, S. Ferrere, A.J. Frank, A.J. Nozik, J. Phys. Chem. B 110, 25451 (2006)

    Article  Google Scholar 

  27. Y.-L. Lee, C.-H. Chang, Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells. J. Power Sources 185, 584–588 (2008)

    Google Scholar 

  28. S.-Q. Fan, D. Kim, J.-J. Kim, D.W. Jung, S.O. Kang, J. Ko, Highly efficient CdSe quantum-dot-sensitized TiO2 photoelectrodes for solar cell applications. Electrochem. Commun. 11, 1337–1339 (2009)

    Article  Google Scholar 

  29. O. Niitsoo, S.K. Sarkar, C. Pejoux, S. Ruhle, D. Cahen, G. Hodes, High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. J. Photochem. Photobiol. A 181, 306 (2006)

    Google Scholar 

  30. S. Nishimura, N. Abrams, B.A. Lewis, L.I. Halaoui, T.E. Mallouk, K.D. Benkstein, J. van de Lagemaat, A.K. Frank, Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. J. Am. Chem. Soc. 125, 6306 (2003)

    Google Scholar 

  31. I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 128, 2385 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunxia Yang or Guorong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gao, B., Shen, C., Yang, Y., Yuan, S., Chen, G. (2014). Green Synthesized CdSe Quantum Dots Capped by 3-Mercaptopropionic Acid Sensitized Solar Cells. In: Oral, A., Bahsi, Z., Ozer, M. (eds) International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013). Springer Proceedings in Physics, vol 155. Springer, Cham. https://doi.org/10.1007/978-3-319-05521-3_2

Download citation

Publish with us

Policies and ethics