Skip to main content
Log in

Highly-efficient quantum dot-sensitized solar cells based on Sn doped ZnO and CuS electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Highly efficient CdS/CdSe/ZnS quantum dots (QDs) co-sensitized solar cells based on Sn doped ZnO (Sn–ZnO) and CuS electrodes were structured. Sn–ZnO nanoparticle was prepared by hydrothermal method and investigated by X-ray diffraction and N2 adsorption–desorption. The influence of sol-modification and printing process on the crystallinity and morphology of Sn–ZnO photoanode was investigated by scanning electron microscopy (SEM). Semiconductor QDs were grown on sol-modified Sn–ZnO (SM–Sn–ZnO) photoanode by successive ion layer absorption and reaction (SILAR) method and built quantum dot-sensitized solar cells (QDSSCs) based on polysulfide electrolyte. Optimizing the SILAR deposition cycle, the highest conversion efficiency (η) reached 2.07 % by co-sensitization of CdS/CdSe/ZnS, which was 37.09 % higher than SM–ZnO based QDSSCs (η = 1.51 %) under the same condition. CuS electrode was used to replace Pt as the cheap counter electrodes of QDSSCs based on the same photoanodes, which could obviously improve the fill factor of QDSSCs and the conversion efficiency reached 3.37 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Meng, Y. Lin, Y. Lin, Y. Wang, J. Mater. Sci. Mater. Electron. 25, 3034 (2014)

    Article  Google Scholar 

  2. M. Grätzel, Nature 414, 338 (2001)

    Article  Google Scholar 

  3. M. Kimura, H. Nomoto, N. Masaki, S. Mori, Angew. Chem. Int. Ed. 51, 4371 (2012)

    Article  Google Scholar 

  4. C. Liu, L. Mu, J. Jia, X. Zhou, Y. Lin, Electrochim. Acta 111, 179 (2013)

    Article  Google Scholar 

  5. Y.L. Lee, Y.S. Lo, Adv. Funct. Mater. 19, 604 (2009)

    Article  Google Scholar 

  6. M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, C. Lee, J. Mater. Sci. Mater. Electron. 24, 2367 (2013)

    Article  Google Scholar 

  7. S.T. Teklemichaael, W.M.H. Oo, M.D. McCluskey, E.D. Walter, D.W. Hoyt, Appl. Phys. Lett 98, 232112 (2011)

    Article  Google Scholar 

  8. A.B. Djuriši, Y.H. Leung, W.C.H. Choy, K.W. Cheah, W.K. Chan, J. A. Appl. Phys. Lett. 84, 2635 (2004)

    Article  Google Scholar 

  9. A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, Phys. Rev. B. 61, 15019 (2000)

    Article  Google Scholar 

  10. Y. Geng, L. Guo, S.-S. Xu, Q.-Q. Sun, S.-J. Ding, H.-L. Lu, D.W. Zhang, J. Phys. Chem. C 115, 12317 (2011)

    Article  Google Scholar 

  11. M. Raja, N. Muthukumarasamy, D. Velauthapillai, R. Balasundraprabhu, S. Agilan, T.S. Senthil, J. Mater. Sci. Mater. Electron. 25, 5035 (2014)

    Article  Google Scholar 

  12. R.T. Ginting, C.C. Yap, M. Yahaya, M. Mat Salleh, ACS Appl. Mater. Interfaces 6, 5308 (2014)

    Article  Google Scholar 

  13. J. Lee, H.S. Shim, M. Lee, J.K. Song, D. Lee, J. Phys. Chem. Lett. 2, 2840 (2011)

    Article  Google Scholar 

  14. Y. Lu, Y. Lin, T. Xie, S. Shi, H. Fan, D. Wang, Nanoscale 4, 6393 (2012)

    Article  Google Scholar 

  15. Y.W. Heo, M. Kaufman, K. Pruessner, K.N. Siebein, D.P. Norton, F. Ren, Appl. Phys. A 80, 263 (2005)

    Article  Google Scholar 

  16. K. Ando, Science 312, 1883 (2006)

  17. Z. Lu, H.-S. Hsu, Y. Tzeng, F. Zhang, Y. Du, J.-C.-A. Huang, Appl. Phys. Lett. 95, 062509 (2009)

    Article  Google Scholar 

  18. L.-T. Chang, C.-Y. Wang, J. Tang, T. Nie, W. Jiang, C.-P. Chu, S. Arafin, L. He, M. Afsal, L.-J. Chen, K.L. Wang, Nano Lett. 14, 1823 (2014)

    Article  Google Scholar 

  19. L. Li, Y. Shen, G. Wu, F. Gu, M. Cao, L. Wang, Semicond. Sci. Technol. 26, 125008 (2011)

    Article  Google Scholar 

  20. G. Larramona, C. Chone, A. Jacob, D. Sakakura, B. Delatouche, D. Pere, X. Cieren, M. Nagino, R. Bayon, Chem. Mater. 18, 1688 (2006)

    Article  Google Scholar 

  21. S.S. Kalanur, S.Y. Chae, O.S. Joo, Electrochim. Acta 103, 91 (2013)

    Article  Google Scholar 

  22. Y.L. Lee, C.H. Chang, J. Power Sources 185, 584 (2008)

    Article  Google Scholar 

  23. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  24. M. Grätzel, J. Photochem. Photobiol. A Chem. 164, 3 (2004)

    Article  Google Scholar 

  25. X. Ma, Y. Shen, Q. Wu, T. Shen, M. Cao, F. Gu, L. Wang, J. Inorg. Organomet. Polym. 23, 798 (2013)

    Article  Google Scholar 

  26. Z. Lu, J. Xu, X. Xie, H. Wang, C. Wang, S.-Y. Kwok, T. Wong, H.L. Kwong, I. Bello, C.-S. Lee, S.-T. Lee, W. Zhang, J. Phys. Chem. C 116, 2656 (2012)

    Article  Google Scholar 

  27. Qing Shen, Junya Kobayashi, Lina J. Diguna, Taro Toyoda, J. Appl. Phys. 103, 084304 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by National Basic Research Program of China (2012CB934300), Shanghai City Committee of Science and Technology (11530500200, 11ZR1412700), National Nature Science Foundation of China (61006089), Innovation Program of Shanghai City (CXSJ-13-077) and Cooperation Fund of Shanghai Institute of Technical Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Shen, Y., Zhang, Z. et al. Highly-efficient quantum dot-sensitized solar cells based on Sn doped ZnO and CuS electrodes. J Mater Sci: Mater Electron 26, 2145–2150 (2015). https://doi.org/10.1007/s10854-014-2660-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2660-1

Keywords

Navigation