Skip to main content

Plane-Wave Approaches to the Electronic Structure of Semiconductor Nanostructures

  • Chapter
  • First Online:
Multi-Band Effective Mass Approximations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 94))

  • 1455 Accesses

Abstract

This chapter is dedicated to different plane-wave based approaches to calculate the electronic structure of semiconductor nanostructures. We introduce semi-analytical and numerical methods to achieve a plane-wave based description of such systems. This includes use of plane-wave methods to calculate not just the electronic structure but also the built-in strain and the polarisation potential, with the strain and the polarisation potential each having a significant influence on the electronic properties of a semiconductor nanostructure. The advantages and disadvantages of different plane-wave based formulations in comparison to a real-space, finite element model will be discussed and we will present representative examples of semiconductor nanostructures together with their elastic and electronic properties, computed from semi-analytical and numerical approaches. We conclude that plane-wave-based methods provide an efficient and flexible approach when using kp models to determine the electronic structure of semiconductor nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.D. Andreev, J.R. Downes, D.A. Faux, et al., Strain distributions in quantum dots of arbitrary shape. J. Appl. Phys. 86, 297–305 (1999)

    Article  Google Scholar 

  2. A.D. Andreev, E.P. O’Reilly, Theory of the electronic structure of GaN/AlN hexagonal quantum dots. Phys. Rev. B 62, 15851–15870 (2000)

    Article  Google Scholar 

  3. A.D. Andreev, R.A. Suris, Semiconductors 30 285–292 (1996)

    Google Scholar 

  4. N. Baer, S. Schulz, P. Gartner, et al., Influence of symmetry and Coulomb correlation effects on the optical properties of nitride quantum dots. Phys. Rev. B 76, 075310, 1–14 (2007)

    Google Scholar 

  5. J.A. Barker, E.P. O’Reilly, Theoretical analysis of electron-hole alignment in InAs-GaAs quantum dots. Phys. Rev. B 61, 13840–13851 (2000)

    Article  Google Scholar 

  6. F. Bernardini, V. Fiorentini, D. Vanderbilt, Accurate calculation of polarization-related quantities in semiconductors. Phys. Rev. B 63, 193201, 1–4 (2001)

    Google Scholar 

  7. G. Bester, X. Wu, D. Vanderbilt, et al., Importance of second-order piezoelectric effects in zinc-blende semiconductors. Phys. Rev. Lett. 96, 187602–187605 (2006)

    Article  Google Scholar 

  8. G. Bester, A. Zunger, X. Wu, et al., Effects of linear and nonlinear piezoelectricity on the electronic properties of InAs/GaAs quantum dots. Phys. Rev. B 74, 081305(R), 1–4 (2006)

    Google Scholar 

  9. S. Boeck, C. Freysoldt, A. Dick, et al., The object-oriented DFT program library S/PHI/nX. Comput. Phys. Commun. 182, 543–554 (2011)

    Article  Google Scholar 

  10. P. Boucaud, S. Sauvage, Infrared photodetection with semiconductor self-assembled quantum dots. C. R. Physique 4, 1133–1154 (2003)

    Article  Google Scholar 

  11. J.R. Chelikowsky, N. Troullier, Y. Saad, Finite-difference-pseudopotential method: Electronic structure calculations without a basis. Phys. Rev. Lett. 72, 1240–1243 (1994)

    Article  Google Scholar 

  12. U.M.E. Christmas, A.D. Andreev, D.A. Faux, Calculation of electric field and optical transitions in InGaN / GaN quantum wells. J. Appl. Phys. 98, 073522, 1–12 (2005)

    Google Scholar 

  13. M.A. Cusack, P.R. Briddon, M. Jaros, Electronic structure of InAs/GaAs self-assembled quantum dots. Phys. Rev. B 54, R2300–R2303 (1996)

    Article  Google Scholar 

  14. V. Dimastrodonato, L.O. Mereni, G. Juska, et al., Impact of nitrogen incorporation on pseudomorphic site-controlled quantum dots grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 97, 072115, 1–3 (2010)

    Google Scholar 

  15. J.R. Downes, D.A. Faux, E.P. O’Reilly, A simple method for calculating strain dispersions in quantum dot structures. J. Appl. Phys. 81, 6700–6702 (1997)

    Article  Google Scholar 

  16. T. Eissfeller, P. Vogl, Real-space multi-band envelope-function approach without spurious solutions. Phys. Rev. B 84, 195122, 1–9 (2011)

    Google Scholar 

  17. J.D. Eshelby, The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. London, Ser. A 252, 561–569 (1959)

    Google Scholar 

  18. X. Gonze, B. Amadon, P.M. Anglade, et al., ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180, 2582–2615 (2009)

    Article  Google Scholar 

  19. N. Grandjean, M. Leroux, J. Massies, Appl. Phys. Lett, 74, 2361 (1999)

    Article  Google Scholar 

  20. S.B. Healy, R.J. Young, L.O. Mereni, et al., Physics of novel site controlled InGaAs quantum dots on (111) oriented substrates. Physica E (Amsterdam) 42, 2761–2764 (2010)

    Article  Google Scholar 

  21. P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas. Phys. Rev. 136, B864–B871 (1964)

    MathSciNet  Google Scholar 

  22. B. Jogai, Three-dimensional strain field calculations in coupled InAs/GaAs quantum dots. J. Appl. Phys. 88, 5050–5055 (2000)

    Article  Google Scholar 

  23. R.O. Jones, O. Gunnarsson, The density funtional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689–746 (1989)

    Article  Google Scholar 

  24. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)

    Article  Google Scholar 

  25. M. Leroux, N. Grandjean, M. Laügt, et al., Phys. Rev. B. 58, R13371–R13374 (1998)

    Article  Google Scholar 

  26. I.M. Lifshits, L.N. Rosentsverg, Zhurnal Exper. Teor. Phiziki 17, 9, (1947) (in russian)

    Google Scholar 

  27. O. Marquardt, S. Boeck, C. Freysoldt, et al., Plane-wave implementation of the real-space kp formalism and continuum elasticity theory. Comput. Phys. Commun. 181, 765–771 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. O. Marquardt, E.P. O’Reilly, S. Schulz, Asymmetric electronic properties of site-controlled (111)-oriented zinc-blende quantum dots calculated using a symmetry adapted kp Hamiltonian. (submitted)

    Google Scholar 

  29. O. Marquardt, S. Schulz, C. Freysoldt, et al., A flexible, plane-wave based multi-band kp model. Opt. Quant. Elec. 44, 183–188 (2012)

    Article  Google Scholar 

  30. L.O. Mereni, O. Marquardt, G. Juska, et al., Fine-structure splitting in large-pitch pyramidal quantum dots. Phys. Rev. B 85, 155453, 1–13 (2012)

    Google Scholar 

  31. J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109, 1–11 (2005)

    Google Scholar 

  32. A.S. Moskalenko, J. Berakdar, J. Prokofiev, et al., Single-particle states in spherical Si/SiO2 quantum dots. Phys. Rev. B 76, 085427, 1–9 (2007)

    Google Scholar 

  33. M.C. Payne, M.P. Teter, D.C. Allan, et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992)

    Article  Google Scholar 

  34. E. Pelucchi, S. Watanabe, K. Leifer, et al., Mechanisms of quantum dot energy engineering by metalorganic vapor phase epitaxy on patterned nonplanar substrates. Nano Lett. 7, 1282–1285 (2007)

    Article  Google Scholar 

  35. M. Povolotskyi, M. Auf der Maur, A. Di Carlo, Strain effects in freestanding three-dimensional nitride nanostructures. Phys. Stat. Sol. (c) 2, 3891–3894 (2005)

    Article  Google Scholar 

  36. C. Pryor, M.E. Pistol, L. Samuelson, Electronic structure of strained InP/Ga0. 51In0. 49P quantum dots. Phys. Rev. B 56 10404–10411 (1997)

    Google Scholar 

  37. C. Pryor, Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations. Phys. Rev. B 57, 7190–7195 (1998)

    Article  Google Scholar 

  38. A. Schliwa, Electronic properties of self-organized quantum dots, Ph.D. dissertation, TU Berlin, Berlin (2007)

    Google Scholar 

  39. A. Schliwa, M. Winkelnkemper, A. Lochmann, et al., In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources of entangled photon pair. Phys. Rev. B 80, 161307(R), 1–4 (2009)

    Google Scholar 

  40. S. Schulz, M.A. Caro, E.P. O’Reilly, et al., Symmetry-adapted calculations of strain and polarization fields in (111)-oriented zinc-blende quantum dots. Phys. Rev. B 84, 125312, 1–14 (2011)

    Google Scholar 

  41. M.D. Segall, P.L.D. Lindan, M.J. Probert, et al., First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys: Cond. Matt. 14 2717–2743 (2002)

    Google Scholar 

  42. R. Singh, G. Bester, Nanowire quantum dots as an ideal source of entangled photon pairs. Phys. Rev. Lett. 103, 063601, 1–4 (2009)

    Google Scholar 

  43. O. Stier, D. Bimberg, Modelling of strained quantum wires using eight-band kp theory. Phys. Rev. B 55, 7726–7732 (1997)

    Article  Google Scholar 

  44. O. Stier, Electronic and optical properties of quantum dots and wires (Berlin, 2000)

    Google Scholar 

  45. S. Tomić, Electronic structure of In y Ga1−y As1−x N x /GaAs(N) quantum dots by ten-band kp theory. Phys. Rev. B 73, 125348, 1–10 (2006)

    Google Scholar 

  46. C.G. Van de Walle, Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989)

    Article  Google Scholar 

  47. R.G. Veprek, S. Steiger, B. Witzigmann, Ellipticity and the spurious solution problem of kp envelope equations. Phys. Rev. B 76, 165320, 1–9 (2007)

    Google Scholar 

  48. R.G. Veprek, S. Steiger, B. Witzigmann, Reliable kp band structure calculation for nanostructures using finite elements. J. Comput. Electron. 7, 521–529 (2008)

    Article  Google Scholar 

  49. N. Vukmirović, S. Tomić, Plane wave methodology for single quantum dot electronic structure calculations. J. Appl. Phys. 103, 103718–103729 (2008)

    Article  Google Scholar 

  50. M. Willatzen, B. Lassen, L.L.Y. Voon, et al., Dynamic coupling of piezoelectric effects, spontaneous polarization, and strain in lattice-mismatched semiconductor quantum-well heterostructures. J. Appl. Phys. 100, 024302, 1–6 (2006)

    Google Scholar 

  51. M. Winkelnkemper, S. Schliwa, D. Bimberg, Interrelation of structural and electronic properties in In x Ga1−x N/GaN quantum dots using an eight-band kp model. Phys. Rev. B 74, 155322, 1–12 (2006)

    Google Scholar 

  52. W. Yang, K. Chang, Origin and elimination of spurious solutions of the eight-band kp theory. Phys. Rev. B 72, 233309, 1–4 (2005)

    MathSciNet  Google Scholar 

  53. Q. Zhu, K.F. Karlsson, E. Pelucchi, et al., Transition from two-dimensional to three-dimensional quantum confinement in semiconductor quantum wires/quantum dots. Nano Lett. 7, 2227–2233 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Christopher A. Broderick for a careful reading and very useful suggestions regarding earlier versions of this chapter. We also thank the many other colleagues with whom we have had the pleasure to work on using plane-wave based methods, including J.A. Barker, S.B. Healy, S. Tomić and D.P. Williams. We acknowledge financial support for the work on (111)-oriented QDs from Science Foundation Ireland (10/IN.1/I299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eoin P. O’Reilly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

O’Reilly, E.P., Marquardt, O., Schulz, S., Andreev, A.D. (2014). Plane-Wave Approaches to the Electronic Structure of Semiconductor Nanostructures. In: Ehrhardt, M., Koprucki, T. (eds) Multi-Band Effective Mass Approximations. Lecture Notes in Computational Science and Engineering, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-01427-2_5

Download citation

Publish with us

Policies and ethics