Skip to main content

Atomic Force Microscopy: Applications in the Field of Biology

  • Chapter
  • First Online:
Surface Analysis and Techniques in Biology

Abstract

The invention of telescopes and microscopes about 400 years ago revolutionized our perception of the world, extending our sense of seeing. Extending it further and further has since been the driving force for major scientific developments. Local probe techniques extend our sense of touching into the micro- and nanoworld and in this way provide complementary new insight into these worlds we see with microscopic techniques. Furthermore, touching things is an essential prerequisite to manipulating things, and the ability to feel and manipulate single molecules and atoms for sure marks another of these revolutionizing steps in our relation to the world in which we live.

Local probes are small-sized objects, such as the very end of sharp tips, which interact with a sample, or better, the surface of a sample at selected positions. Proximity to or contact with the sample is required to have a high spatial resolution. This, in principle, is an old idea that appeared in the literature from time to time in context with bringing a source of electromagnetic radiation in close contact with a sample (Synge, Philos Mag 6:356, 1928; O’Keefe, J Opt Soc 46:359, 1956; Ash and Nicolls, Nature 237:510, 1972). It found no resonance and therefore was not pursued until the early 1980s. Nanoscale local probes require atomically stable tips and high-precision manipulation devices. The latter are based on mechanical deformations of spring-like structures by piezoelectric, electrostatic, or magnetic forces to ensure continuous and reproducible displacements with precision down to the picometer level. They also require very good vibration isolation. The resolution that can be achieved with local probes is given mainly by the effective probe size, its distance from the sample, and the distance dependence of the interaction between the probes and the sample measured. The last can be considered creating an effective aperture by selecting a small feature of the overall geometry of the probe tip, which then corresponds to the effective probe. One of the great advantages of local probes is that they can work in any environment; this way, they provide the possibility to study live biological processes similar to optical microscopy, but at a resolution similar to electron microscopy (EM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Synge EH. A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos Mag. 1928;6:356.

    CAS  Google Scholar 

  2. O’Keefe JA. Resolving power of visible light. J Opt Soc. 1956;46:359.

    Article  Google Scholar 

  3. Ash EA, Nicolls G. Super-resolution aperture scanning microscope. Nature. 1972;237:510.

    Article  CAS  PubMed  Google Scholar 

  4. Binnig G, Rohrer H, Gerber C, Weibel E. Tunneling through a controllable vaccuum gap. Appl Phys Lett. 1982;40:178.

    Article  CAS  Google Scholar 

  5. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56:930.

    Article  PubMed  Google Scholar 

  6. Atomic force microscope and method for imaging surfaces with atomic resolution, issued to Gerd K. Binnig of IBM’s Zurich Research Laboratory in 1988, U.S. Patent 4724318.

    Google Scholar 

  7. Giessibl FJ, Hembacher S, Bielefeldt H, Mannhardt J. Subatomic features on the silicon(111)-(7×7) surface observed by atomic force microscopy. Science. 2000;289(5478):422.

    Article  CAS  PubMed  Google Scholar 

  8. Meyer E, Amer NM. Novel optical approach to atomic force microscopy. Appl Phys Lett. 1988;53:2400.

    Article  Google Scholar 

  9. Florin E-L, Moy VT, Gaub HE. Adhesion forces between individual ligand-receptor pairs. Science. 1994;264:415.

    Article  CAS  PubMed  Google Scholar 

  10. Haynes CA, Norde W. Globular proteins at solid-liquid interfaces. Colloids Surf B Biointerfaces. 1994;2:517–66.

    Article  CAS  Google Scholar 

  11. Eckert R, Jeney S, Hörber JKH. Understanding intercellular interactions and cell adhesion: lessons from studies on protein-metal interactions. Cell Biol Int. 1998;21:707.

    Article  Google Scholar 

  12. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE. Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM. Science. 1997;276:1109.

    Article  CAS  PubMed  Google Scholar 

  13. Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C. Folding-unfolding transitions in single titin molecules characterized with force-measuring laser tweezers. Science. 1997;276:1112.

    Article  CAS  PubMed  Google Scholar 

  14. Tskhovrebova L, Trinick J, Sleep JA, Simmons RM. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature. 1997;387:308.

    Article  CAS  PubMed  Google Scholar 

  15. Altmann SM, Grunberg RG, Lenne PF, Ylanne J, Raae A, Herbert K, Saraste M, Nilges M, Hörber JKH. Pathways and intermediates in forced unfolding of spectrin repeats. Structure. 2002;10:1085–96.

    Article  CAS  PubMed  Google Scholar 

  16. Häberle W, Hörber JKH, Binnig G. Force microscopy on living cells. J Vac Sci Technol. 1991;B9:1210.

    Article  Google Scholar 

  17. Cross SE, Yu-Sheng Jin, Jianyu Rao, Gimzewski JK. Nanomechanics of human metastatic cancer cells in clinical pleural effusions. Nat Nanotechnol. 2007;2:780–3.

    Google Scholar 

  18. Hörber JKH, Häberle W, Ohnesorge F, Binnig G, Liebich HG, Czerny CP, Mahnel H, Mayr A. Investigation of living cells in the nanometer regime with the scanning force microscope. Scanning Microsc. 1992;6:919.

    PubMed  Google Scholar 

  19. Stokes GV. High-voltage electron microscope study of the release of vaccinia virus from whole cells. J Virol. 1976;18:636.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Hörber JKH, Mosbacher J, Häberle W, Ruppersberg P, Sakmann B. A look at membrane patches with a scanning force microscope. Biophys J. 1995;68:1687.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Mosbacher J, Langer M, Hörber JKH, Sachs F. Voltage-dependent membrane displacements measured by atomic force microscopy. J Gen Physiol. 1998;111:65–74.

    Google Scholar 

  22. Corey DP, Hudspeth AJ. Analysis of the microphonic potential of the bullfrog’s sacculus. J Neurosci. 1983;3:962.

    CAS  PubMed  Google Scholar 

  23. Furness DN, Hackney CM, Benos DJ. The binding site on cochlear stereocilia for antisera raised against renal Na channels is blocked by amiloride and dihydrostreptomycin. Hear Res. 1996;93:136.

    Article  CAS  PubMed  Google Scholar 

  24. Langer MG, Öffner W, Wittmann H, Flösser H, Schaar H, Häberle W, Pralle A, Ruppersberg JP, Hörber JKH. A scanning force microscope for simultaneous force and patch-clamp measurements on living cell tissues. Rev Sci Instrum. 1997;68:2583.

    Article  CAS  Google Scholar 

  25. Adler HJ, Poje CP, Saunders JC. Recovery of auditory function and structure in the chick after two intense pure tone exposures. Hear Res. 1993;71:214.

    Article  CAS  PubMed  Google Scholar 

  26. Langer MG, Koitschev A, Haase H, Rexhausen U, Hörber JKH, Ruppersberg JP. Mechanical stimulation of individual stereocilia of living cochlear hair cells by atomic force microscopy. Ultramicroscopy. 2000;82:269.

    Article  CAS  PubMed  Google Scholar 

  27. Goldsbury C, Scheuring S. Curr Protoc Protein Sci. 2002;17.7.1–17

    Google Scholar 

  28. Hörber JKH, Miles M. Science. 2003;302:1002–5.

    Article  PubMed  Google Scholar 

  29. Braga PC, Ricci D. Atomic force microscopy: biomedical methods and applications. Totowa: Humana Press; 2004.

    Google Scholar 

  30. Connell SDA, Smith DAM. Mol Membr Biol. 2006;23(1):17–28.

    Google Scholar 

  31. Forman JR, Clarke J. Curr Opin Struct Biol. 2007;17:58.

    Article  CAS  PubMed  Google Scholar 

  32. Yang H, Wang Y, Lai S, An H, Li Y, Chen F. J Food Sci. 2007;72(4):65–5.

    Google Scholar 

  33. Gonçalves RP, Buzhysnskyy N, Scheuring S. J Bioenerg Biomembr. 2008;40:133–8.

    Article  PubMed  Google Scholar 

  34. Liu H, Fu S, Zhu JY, Li H, Zhan H. Enzyme Microb Technol. 2009;45:274–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Heinrich Hoerber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoerber, J.K.H. (2014). Atomic Force Microscopy: Applications in the Field of Biology. In: Smentkowski, V. (eds) Surface Analysis and Techniques in Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-01360-2_10

Download citation

Publish with us

Policies and ethics