Skip to main content

Continuous Decompositions and Coalescing Eigenvalues for Matrices Depending on Parameters

  • Chapter
  • First Online:
Current Challenges in Stability Issues for Numerical Differential Equations

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2082))

  • 1555 Accesses

Abstract

This contribution is a summary of four lectures delivered by the first author at the CIME Summer school in June 2011 at Cetraro (Italy). Preparation of those lectures was greatly aided by the other authors of these lecture notes. Our goal is to present some classical, as well as some new, results related to decompositions of matrices depending on one or more parameters, with particular emphasis being paid to the case of coalescing eigenvalues (or singular values) for matrices depending on two or three parameters. There is an extensive literature on this subject, but a systematic collection of relevant results is lacking, and this provided the impetus for writing the lecture notes. During the last 15 years, Dieci has had several collaborators on the topics under scrutiny. Besides the coauthors of these lectures, the collaboration with the following people is gratefully acknowledged: Timo Eirola (Helsinki University of Technology, Finland), Jann-Long Chern (National Central University, Taiwan), Mark Friedman (University of Alabama, Huntsville) and Maria Grazia Gasparo (University of Florence, Italy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    No sub-diagonal element is 0.

  2. 2.

    Recall that a matrix M is irreducible if there does not exist a permutation matrix E for which E T ME is in block upper triangular form: \({E}^{T}ME = \left [\begin{array}{cc} M_{11} & M_{12}\\ 0 & M_{ 22} \end{array} \right ]\). In particular, a permutation matrix P is irreducible if there does not exist another permutation matrix E for which \({E}^{T}PE = \left [\begin{array}{cc} P_{11} & 0\\ 0 & P_{ 22} \end{array} \right ]\) with P 11 and P 22 permutation matrices of smaller size.

  3. 3.

    They are also called “diabolical points”, with reference to the popular toy “diablo”.

  4. 4.

    See Remark 2.8.

  5. 5.

    The same would be true if we assumed transversal intersection of the pair Γ3 and Γ 4 .

  6. 6.

    Recall that the occurrence of a coalescing point along a curve is non generic. However, in case it happens, then it is actually detected by our algorithm (since the stepsize is pushed below the minimum allowed stepsize). This is actually a somewhat pleasant occurrence, since after all we are trying to detect coalescing points!

  7. 7.

    Typical values used are tolls = 10−1, h max = L∕10, h min = 10−14.

  8. 8.

    Typical values used are tollp = π∕6, which corresponds to restricting a phase variation to be at most π∕4, Δ max to be 1∕10, Δ min = 10−14, Δ 0 = Δ max.

References

  1. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, New York, 1985)

    Book  MATH  Google Scholar 

  2. C. Adams, R. Franzosa, Introduction to Topology Pure and Applied (Pearson Prentice Hall, Upper Saddle River, 2008)

    Google Scholar 

  3. M.W. Hirsch, Differential Topology (Springer, New York, 1976)

    Book  MATH  Google Scholar 

  4. V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd edn. (Springer, New York, 1988)

    Book  Google Scholar 

  5. J.K. Hale, Ordinary Differential Equations (Krieger Publishing Co, Malabar, 1980)

    MATH  Google Scholar 

  6. H.B. Keller, Lectures on Numerical Methods in Bifurcation Problems (Springer/Tata Institute of Fundamental Research, New York/Bombay, 1987)

    Google Scholar 

  7. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer, New York, 1995)

    Book  MATH  Google Scholar 

  8. E. Allgower, K. Georg, Numerical Continuation Methods (Springer, New York, 1990)

    Book  MATH  Google Scholar 

  9. W.C. Rheinboldt, Numerical Analysis of Parameterized Nonlinear Equations (Wiley, New York, 1986)

    Google Scholar 

  10. G.H. Golub, C.F. Van Loan, Matrix Computations, 2nd edn. (The Johns Hopkins University Press, Baltimore, 1989)

    MATH  Google Scholar 

  11. T. Kato, A Short Introduction to Perturbation Theory for Linear Operators (Springer, New York, 1982) [Kato shows that analytic and Hermitian, then it has analytic eigendecomposition]

    Book  MATH  Google Scholar 

  12. P. Lax, Linear Algebra and Its Applications, 2nd edn. (Wiley, New York, 2007)

    MATH  Google Scholar 

  13. T. Kato, Perturbation Theory for Linear Operators, 2nd edn. (Springer, Berlin, 1976)

    Book  MATH  Google Scholar 

  14. F. Rellich, Perturbation Theory of Eigenvalue Problems (Gordon and Breach, New York, 1969) [Shows that smooth Hermitian may have non-smooth eigenspaces]

    MATH  Google Scholar 

  15. M. Baer, Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  16. A.P. Seyranian, A.A. Mailybaev, Multiparameter Stability Theory with Mechanical Applications (World Scientific, Singapore, 2003) [Very thorough account, includes local analysis at coalescing eigenvalues]

    MATH  Google Scholar 

  17. E. Allgower, K. Georg, Continuation and path following. Acta Numerica 2, 1–64 (1993)

    Article  MathSciNet  Google Scholar 

  18. L.T. Watson, M. Sosonkina, R.C. Melville, A.P. Morgan, H.F., Walker, Algorithm 777: HOMPACK 90: A suite of Fortran 90 codes for globally convergent homotopy algorithms. ACM Trans. Math. Software 23, 514–549 (1997)

    Google Scholar 

  19. S. Campbell, Numerical solution of higher index linear time varying singular systems of DAEs. SIAM J. Sci. Stat. Comp. 6, 334–348 (1988)

    Article  Google Scholar 

  20. P. Kunkel, V. Mehrmann, Canonical forms for linear DAEs with variable coefficients. J. Comp. Appl. Math. 56, 225–251 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Yu.A. Kuznetsov, B. Sandstede, X.J. Wang, AUTO97: Continuation and bifurcation software for ordinary differential equations (with HomCont). Available at ftp.cs.concordia.ca, Concordia University (1997)

    Google Scholar 

  22. Y. Sibuya, Some global properties of matrices of functions of one variable. Math. Anal. 161, 67–77 (1965) [Smooth diagonalization, considerations on periodicity of eigendecompositions]

    Google Scholar 

  23. V.A. Eremenko, Some properties of periodic matrices. Ukrainian Math. J. 32, 19–26 (1980) [Somewhat extends periodicity results of Sibuya]

    Google Scholar 

  24. A. Bunse-Gerstner, R. Byers, V. Mehrmann, N.K. Nichols, Numerical computation of an analytic singular value decomposition by a matrix valued function. Numer. Math. 60, 1–40 (1991) [Analytic SVD for analytic function]

    Google Scholar 

  25. H. Gingold, P.F. Hsieh, Globally analytic triangularization of a matrix function. Lin. Algebra Appl. 169, 75–101 (1992) [Extends Kato’s results to Schur form when eigenvalues are aligned]

    Google Scholar 

  26. L. Dieci, T. Eirola, On smooth orthonormal factorizations of matrices. SIAM J. Matrix Anal. Appl. 20, 800–819 (1999) [Analyzes Schur, SVD, block-analogs, as well as impact of coalescing and genericity]

    Google Scholar 

  27. J.L. Chern, L. Dieci, Smoothness and periodicity of some matrix decompositions. SIAM Matrix Anal. Appl. 22, 772–792 (2000) [Constant rank, periodicity and impact of coalescing on it]

    Google Scholar 

  28. K.A. O’Neil, Critical points of the singular value decomposition. SIAM J. Matrix Anal. 27, 459–473 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Dieci, M.G. Gasparo, A. Papini, Smoothness of Hessenberg and bidiagonal forms. Med. J. Math. 5(1), 21–31 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. L. Dieci, T. Eirola, Applications of smooth orthogonal factorizations of matrices, in IMA Volumes in Mathematics and Its Applications, ed. by E. Doedel, L. Tuckermann, 119 (Springer-Verlag, New York, 1999), pp. 141–162

    Google Scholar 

  31. M. Baumann, U. Helmke, Diagonalization of time varying symmetric matrices, Proc. Inter. Conference on Computational Sci. 3, pp. 419–428 (2002)

    MathSciNet  Google Scholar 

  32. L. Dieci, A. Papini, Continuation of Eigendecompositions. Future Generat. Comput. Syst. 19(7), 363–373 (2003)

    Article  Google Scholar 

  33. J. Demmel, L. Dieci, M. Friedman, Computing connecting orbits via an improved algorithm for continuing invariant subspaces. SIAM J. Sci. Comput. 22, 81–94 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Dieci, M. Friedman, Continuation of invariant subspaces. Appl. Numer. Lin. Algebra 8, 317–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. W.J. Beyn, W. Kles, V. Thümmler, Continuation of low-dimensional invariant subspaces in dynamical systems of large dimension, in Ergodic Theory, Analysis and Efficient Simulation of Dynamical Systems, ed. by B. Fiedler (Springer, Berlin, 2001), pp. 47–72

    Google Scholar 

  36. L. Dieci, J. Rebaza, Point-to-periodic and periodic-to-periodic connections. BIT 44, 41–62 (2004). Erratum of the same in BIT 44, 617–618 (2004)

    Google Scholar 

  37. D. Bindel, J. Demmel, M. Friedman, Continuation of invariant subspaces for large bifurcation problems, in SIAM Conference on Applied Linear Algebra (The College of William and Mary, Williamsburg, 2003)

    Google Scholar 

  38. K. Wright, Differential equations for the analytical singular value decomposition of a matrix. Numer. Math. 63, 283–295 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Mehrmann, W. Rath, Numerical methods for the computation of analytic singular value decompositions. Electron. Trans. Numer. Anal. 1, 72–88 (1993)

    MathSciNet  MATH  Google Scholar 

  40. L. Dieci, M.G. Gasparo, A. Papini, Continuation of singular value decompositions. Med. J. Math. 2, 179–203 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Chow, Y. Shen, Bifurcations via singular value decompositions. Appl. Math. Comput. 28, 231–245 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Dieci, M.G. Gasparo, A. Papini, Path Following by SVD. Lecture Notes in Computer Science, vol. 3994 (Springer, New York, 2006), pp. 677–684

    Google Scholar 

  43. O. Koch, C. Lubich, Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29, 434–454 (2007)

    Article  MathSciNet  Google Scholar 

  44. A. Nonnenmacher, C. Lubich, Dynamical low rank approximation: applications and numerical experiments. Math. Comp. Simulat. 79, 1346–1357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. L. Dieci, A. Pugliese, Singular values of two-parameter matrices: An algorithm to accurately find their intersections. Math. Comp. Simulat. 79(4), 1255–1269 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. L. Dieci, A. Pugliese, Two-parameter SVD: Coalescing singular values and periodicity. SIAM J. Matrix Anal. 31(2), 375–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. L. Dieci, M.G. Gasparo, A. Papini, A. Pugliese, Locating coalescing singular values of large two-parameter matrices. Math. Comp. Simul. 81(5), 996–1005 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. L. Dieci, A. Pugliese, Hermitian matrices depending on three parameters: Coalescing eigenvalues. Lin. Algebra Appl. 436, 4120–4142 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. L. Dieci, A. Papini, A. Pugliese, Approximating coalescing points for eigenvalues of Hermitian matrices of three parameters. SIAM J. Matrix Anal. 34(2), 519–541 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. H. Gingold, A method of global block diagonalization for matrix-valued functions. SIAM J. Math. Anal. 9(6), 1076–1082 (1978) [On plurirectangular regions, disjoint spectra]

    Google Scholar 

  51. P.F. Hsieh, Y. Sibuya, A global analysis of matrices of functions of several variables. J. Math. Anal. Appl. 14, 332–340 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  52. M.E. Henderson, Multiple parameter continuation: Computing implicitly defined k-manifolds. Int. J. Bifur. Chaos Appl. Sci. Eng. 12, 451–476 (2002)

    Article  MATH  Google Scholar 

  53. W.C. Rheinboldt, J.V. Burkardt, A locally parameterized continuation process. ACM Trans. Math. Software 9, 215–235 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  54. W. Rheinboldt, On the computation of multi-dimensional solution manifolds of parametrized equations. Numer. Math. 53, 165–181 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  55. J. von Neumann, E. Wigner, Eigenwerte bei adiabatischen prozessen. Physik Zeitschrift 30, 467–470 (1929) [First realization of codimension of phenomenon of coalescing eigenvalues]

    Google Scholar 

  56. A.J. Stone, Spin-orbit coupling and the intersection of potential energy surfaces in polyatomic molecules. Proc. Roy. Soc. Lond. A351, 141–150 (1976)

    Article  Google Scholar 

  57. M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. Lond. A392, 45–57 (1984)

    Article  Google Scholar 

  58. M.V. Berry, Geometric phase memories. Nat. Phys. 6, 148–150 (2010)

    Article  Google Scholar 

  59. G. Herzberg, H.C. Longuet-Higgins, Intersection of potential energy surfaces in polyatomic molecules. Discuss. Faraday Soc. 35, 77–82 (1963) [Study of model problem with coalescing eigenvalues on loop around origin]

    Google Scholar 

  60. D.R. Yarkony, Conical intersections: The new conventional wisdom. J. Phys. Chem. A 105, 6277–6293 (2001)

    Article  Google Scholar 

  61. P.N. Walker, M.J. Sanchez, M. Wilkinson, Singularities in the spectra of random matrices. J. Math. Phys. 37(10), 5019–5032 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  62. P.N. Walker, M. Wilkinson, Universal fluctuations of Chern integers. Phys. Rev. Lett. 74(20), 4055–4058 (1995)

    Article  Google Scholar 

  63. M. Wilkinson, E.J. Austin, Densities of degeneracies and near-degeneracies. Phys. Rev. A 47(4), 2601–2609 (1993)

    Article  Google Scholar 

  64. N.C. Perkins, C.D. Mote Jr., Comments on curve veering in eigenvalue problems. J. Sound Vib. 106, 451–463 (1986)

    Article  Google Scholar 

  65. A. Srikantha Phani, J. Woodhouse, N.A. Fleck, Wave propagation in two-dimensional periodic lattices, J. Acoust. Soc. Am. 119, 1995–2005 (2006)

    Article  Google Scholar 

  66. C. Pierre, Mode localization and eigenvalue loci veering phenomena in disordered structures. J. Sound Vib. 126, 485–502 (1988)

    Article  Google Scholar 

  67. A. Gallina, L. Pichler, T. Uhl, Enhanced meta-modelling technique for analysis of mode crossing, mode veering and mode coalescence in structural dynamics. Mech. Syst. Signal Process. 25, 2297–2312 (2011)

    Article  Google Scholar 

  68. L. Dieci, J. Lorenz, Computation of invariant tori by the method of characteristics. SIAM J. Numer. Anal. 32, 1436–1474 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  69. L. Dieci, J. Lorenz, Lyapunov–type numbers and torus breakdown: Numerical aspects and a case study. Numer. Algorithms 14, 79–102 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  70. T.F. Coleman, D.C. Sorensen, A note on the computation of and orthonormal basis for the null space of a matrix. Math. Program. 29, 234–242 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  71. W. Beyn, On well-posed problems for connecting orbits in dynamical systems. Cont. Math. 172, 131–168 (1994)

    Article  MathSciNet  Google Scholar 

  72. T. Eirola, J. von Pfaler, Numerical Taylor expansions for invariant manifolds. Numer. Math. 99, 25–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  73. Y.W. Kwon, H. Bang, The finite element method using MATLAB, 2nd edn. (CRC Press, Boca Raton, 2000)

    Google Scholar 

  74. W. Wasow, On the spectrum of Hermitian matrix valued functions. Resultate der Mathematik 2, 206–214 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  75. M.V. Berry, M. Wilkinson, Diabolical points in the spectra of triangles. Proc. Roy. Soc. Lond. Ser. A 392, 15–43 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Dieci .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dieci, L., Papini, A., Pugliese, A., Spadoni, A. (2014). Continuous Decompositions and Coalescing Eigenvalues for Matrices Depending on Parameters. In: Current Challenges in Stability Issues for Numerical Differential Equations. Lecture Notes in Mathematics(), vol 2082. Springer, Cham. https://doi.org/10.1007/978-3-319-01300-8_4

Download citation

Publish with us

Policies and ethics