Skip to main content

L -Extremal Mappings in AMLE and Teichmüller Theory

  • Chapter
  • First Online:
Fully Nonlinear PDEs in Real and Complex Geometry and Optics

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2087))

  • 1588 Accesses

Abstract

These lecture focus on two vector-valued extremal problems which have a common feature in that the corresponding energy functionals involve L norm of an energy density rather than the more familiar L p norms. Specifically, we will address (a) the problem of extremal quasiconformal mappings and (b) the problem of absolutely minimizing Lipschitz extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Implicit summation on repeated indices is used throughout the paper.

  2. 2.

    Recall that every Riemann surface is orientable and any conformal atlas yields a triangulation.

  3. 3.

    To do this however one has to assume existence of two derivatives for the solution.

References

  1. L.V. Ahlfors, On quasiconformal mappings. J. Analyse Math. 3, 1–58 (1954); correction, 207–208

    Google Scholar 

  2. L.V. Ahlfors, An introduction to the theory of analytic functions of one complex variable, in Complex Analysis, 3rd edn. International Series in Pure and Applied Mathematics (McGraw-Hill, New York, 1978)

    Google Scholar 

  3. L.V. Ahlfors, Lectures on Quasiconformal Mappings, 2nd edn. University Lecture Series, vol. 38 (American Mathematical Society, Providence, 2006). With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard

    Google Scholar 

  4. G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6(1967), 551–561 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Aronsson, M.G. Crandall, P. Juutinen, A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. (N.S.) 41(4), 439–505 (2004)

    Google Scholar 

  6. O.A. Asadchii, On the maximum principle for n-dimensional quasiconformal mappings. Mat. Zametki 50(6), 14–23, 156 (1991)

    Google Scholar 

  7. K. Astala, T. Iwaniec, G.J. Martin, J. Onninen, Extremal mappings of finite distortion. Proc. Lond. Math. Soc. (3) 91(3), 655–702 (2005)

    Google Scholar 

  8. K. Astala, T. Iwaniec, G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton Mathematical Series, vol. 48 (Princeton University Press, Princeton, 2009)

    Google Scholar 

  9. K. Astala, T. Iwaniec, G. Martin, Deformations of annuli with smallest mean distortion. Arch. Ration. Mech. Anal. 195(3), 899–921 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Z.M. Balogh, K. Fässler, I.D. Platis, Modulus of curve families and extremality of spiral-stretch maps. J. Anal. Math. 113, 265291 (2011)

    Article  Google Scholar 

  11. E.N. Barron, R.R. Jensen, C.Y. Wang, Lower semicontinuity of L functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(4), 495–517 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. E.N. Barron, R.R. Jensen, C.Y. Wang, The Euler equation and absolute minimizers of L functionals. Arch. Ration. Mech. Anal. 157(4), 255–283 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Bauman, D. Phillips, N.C. Owen, Maximal smoothness of solutions to certain Euler-Lagrange equations from nonlinear elasticity. Proc. Roy. Soc. Edin. Sect. A 119(3–4), 241–263 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Bers, Quasiconformal mappings and Teichmüller’s theorem, in Analytic Functions (Princeton University Press, Princeton, 1960), pp. 89–119

    Google Scholar 

  15. T. Bhattacharya, E. DiBenedetto, J. Manfredi, Limits as p →  of Δ p u p  = f and related extremal problems. Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989), 15–68 (1991). Some topics in nonlinear PDEs (Turin, 1989)

    Google Scholar 

  16. L. Capogna, A. Raich, An Aronsson-Type Approach to Extremal Quasiconformal Mappings in Space. Preprint (2010)

    Google Scholar 

  17. M.G. Crandall, A visit with the -Laplace equation, in Calculus of Variations and Nonlinear Partial Differential Equations. Lecture Notes in Mathematics, vol. 1927 (Springer, Berlin, 2008), pp. 75–122

    Google Scholar 

  18. M.G. Crandall, H. Ishii, P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Google Scholar 

  19. M. Csörnyei, S. Hencl, J. Malý, Homeomorphisms in the Sobolev space W 1, n − 1. J. Reine Angew. Math. 644, 221–235 (2010)

    MathSciNet  MATH  Google Scholar 

  20. B. Dacorogna, W. Gangbo, Extension theorems for vector valued maps. J. Math. Pure Appl. (9) 85(3), 313–344 (2006)

    Google Scholar 

  21. L.C. Evans, O. Savin, W. Gangbo, Diffeomorphisms and nonlinear heat flows. SIAM J. Math. Anal. 37(3), 737–751 (2005) (electronic)

    Google Scholar 

  22. D. Faraco, X. Zhong, Geometric rigidity of conformal matrices. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(4), 557–585 (2005)

    Google Scholar 

  23. R. Fehlmann, Extremal problems for quasiconformal mappings in space. J. Analyse Math. 48, 179–215 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Friesecke, S. Müller, R.D. James, Rigorous derivation of nonlinear plate theory and geometric rigidity. C. R. Math. Acad. Sci. Paris 334(2), 173–178 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Fusco, G. Moscariello, C. Sbordone, The limit of W 1, 1 homeomorphisms with finite distortion. Calc. Var. Part. Differ. Equat. 33(3), 377–390 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. F.P. Gardiner, Teichmüller Theory and Quadratic Differentials. Pure and Applied Mathematics (New York) (Wiley, New York, 1987). A Wiley-Interscience Publication

    Google Scholar 

  27. F.W. Gehring, The definitions and exceptional sets for quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I No. 281, 28 (1960)

    MathSciNet  Google Scholar 

  28. F.W. Gehring, Rings and quasiconformal mappings in space. Trans. Am. Math. Soc. 103, 353–393 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  29. F.W. Gehring, Quasiconformal mappings in Euclidean spaces, in Handbook of Complex Analysis: Geometric Function Theory, vol. 2 (Elsevier, Amsterdam, 2005), pp. 1–29

    Google Scholar 

  30. F.W. Gehring, J. Väisälä, The coefficients of quasiconformality of domains in space. Acta Math. 114, 1–70 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies, vol. 105 (Princeton University Press, Princeton, 1983)

    Google Scholar 

  32. H. Grötzsch, Über die Verzerrung bei schlichten nichtkonformen Abbildungen und über eine damit zusammenhängende Erweiterung des Picardschen Satzes. Berichte Leipzig 80, 503–507 (1928)

    Google Scholar 

  33. R.S. Hamilton, Extremal quasiconformal mappings with prescribed boundary values. Trans. Am. Math. Soc. 138, 399–406 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Heinonen, P. Koskela, Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181(1), 1–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Hencl, P. Koskela, Regularity of the inverse of a planar Sobolev homeomorphism. Arch. Ration. Mech. Anal. 180(1), 75–95 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Hencl, P. Koskela, J. Onninen, A note on extremal mappings of finite distortion. Math. Res. Lett. 12(2–3), 231–237 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Hencl, P. Koskela, J. Onninen, Homeomorphisms of bounded variation. Arch. Ration. Mech. Anal. 186(3), 351–360 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. T. Iwaniec, G. Martin, Quasiregular mappings in even dimensions. Acta Math. 170(1), 29–81 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. T. Iwaniec, G. Martin, Geometric Function Theory and Non-Linear Analysis. Oxford Mathematical Monographs (The Clarendon Press/Oxford University Press, New York, 2001)

    Google Scholar 

  40. T. Iwaniec, V. Šverák, On mappings with integrable dilatation. Proc. Am. Math. Soc. 118(1), 181–188 (1993)

    Article  MATH  Google Scholar 

  41. T. Iwaniec, P. Koskela, J. Onninen, Mappings of finite distortion: monotonicity and continuity. Invent. Math. 144(3), 507–531 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Iwaniec, P. Koskela, J. Onninen, Mappings of finite distortion: compactness. Ann. Acad. Sci. Fenn. Math. 27(2), 391–417 (2002)

    MathSciNet  MATH  Google Scholar 

  43. T. Iwaniec, L.V. Kovalev, J. Onninen, Lipschitz regularity for inner-variational equations. Duke Math. J. 162(4), 643672 (2013)

    MathSciNet  Google Scholar 

  44. R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123(1), 51–74 (1993)

    Article  MATH  Google Scholar 

  45. J. Jost, in Compact Riemann Surfaces, 3rd edn. Universitext (Springer, Berlin, 2006), xviii+277 pp.

    Google Scholar 

  46. N. Katzourakis, Extremal Infinity-Quasiconformal Immersions. Preprint (2012)

    Google Scholar 

  47. N.I. Katzourakis, L variational problems for maps and the Aronsson PDE system. J. Differ. Equat. 253(7), 2123–2139 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Liouville, J. Math. Pure Appl. 15, 103 (1850)

    Google Scholar 

  49. E.J. McShane, Extension of range of functions. Bull. Am. Math. Soc. 40(12), 837–842 (1934)

    Article  MathSciNet  Google Scholar 

  50. C. Morrey, Quasiconvexity and the lower semioontinuity of multiple integrals. Pac. J. Math. 2, 25–53 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  51. C. Morrey, Multiple Integrals in the Calculus of Variations (Springer, Berlin, 1966)

    MATH  Google Scholar 

  52. A. Naor, S. Sheffield, Absolutely minimal Lipschitz extension of tree-valued mappings. Math. Ann. 354(3), 1049–1078 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Y.-L. Ou, T. Troutman, F. Wilhelm, Infinity-harmonic maps and morphisms. Differ. Geom. Appl. 30(2), 164–178 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. E. Reich, Extremal quasiconformal mappings of the disk, in Handbook of Complex Analysis: Geometric Function Theory, vol. 1 (North-Holland, Amsterdam, 2002), pp. 75–136

    Google Scholar 

  55. E. Reich, K. Strebel, Extremal plane quasiconformal mappings with given boundary values. Bull. Am. Math. Soc. 79, 488–490 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  56. E. Reich, K. Strebel, Extremal quasiconformal mappings with given boundary values, in Contributions to Analysis (A Collection of Papers Dedicated to Lipman Bers) (Academic, New York, 1974), pp. 375–391

    Google Scholar 

  57. J.G. Rešetnjak, Liouville’s conformal mapping theorem under minimal regularity hypotheses. Sibirsk. Mat. Ž. 8, 835–840 (1967)

    MathSciNet  Google Scholar 

  58. Y.G. Reshetnyak, Space Mappings with Bounded Distortion. Translations of Mathematical Monographs, vol. 73 (American Mathematical Society, Providence, 1989). Translated from the Russian by H. H. McFaden

    Google Scholar 

  59. J. Sarvas, Ahlfors’ trivial deformations and Liouville’s theorem in R n, in Complex Analysis Joensuu 1978 (Proc. Colloq., Univ. Joensuu, Joensuu, 1978). Lecture Notes in Mathematics, vol. 747 (Springer, Berlin, 1979), pp. 343–348

    Google Scholar 

  60. V.I. Semenov, Necessary conditions in extremal problems for spatial quasiconformal mappings. Sibirsk. Mat. Zh. 21, 5 (1980)

    Google Scholar 

  61. V.I. Semenov, On sufficient conditions for extremal quasiconformal mappings in space. Sibirsk. Mat. Zh. 22, 3 (1981)

    Google Scholar 

  62. V.I. Semënov, S.I. Sheenko, Some extremal problems in the theory of quasiconformal mappings. Sibirsk. Mat. Zh. 31, 1 (1990)

    Article  Google Scholar 

  63. S. Sheffield, C.K. Smart, Vector-Valued Optimal Lipschitz Extensions. Preprint (2010)

    Google Scholar 

  64. K. Strebel, Quadratic Differentials. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 5 [Results in Mathematics and Related Areas (3)] (Springer, Berlin, 1984)

    Google Scholar 

  65. K. Strebel, Extremal quasiconformal mappings. Results Math. 10(1–2), 168–210 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  66. J. Väisälä, Two new characterizations for quasiconformality. Ann. Acad. Sci. Fenn. Ser. A I No. 362, 12 (1965)

    MathSciNet  Google Scholar 

  67. J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Mathematics, vol. 229 (Springer, Berlin, 1971)

    Google Scholar 

  68. E. Villamor, J.J. Manfredi, An extension of Reshetnyak’s theorem. Indiana Univ. Math. J. 47(3), 1131–1145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  69. H. Whitney, Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63–89 (1934)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We wish to thank C. Gutierrez and E. Lanconelli for the scientific organization of the C. I. M.E. course and for inviting the author to present these lectures. We are also grateful to P. Zecca and to all the staff of C. I.M.E. for their logistic support and hospitality. The author is partially supported by the US National Science Foundation through grants DMS-1101478 and DMS-0800522

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Capogna .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Capogna, L. (2014). L -Extremal Mappings in AMLE and Teichmüller Theory. In: Fully Nonlinear PDEs in Real and Complex Geometry and Optics. Lecture Notes in Mathematics(), vol 2087. Springer, Cham. https://doi.org/10.1007/978-3-319-00942-1_1

Download citation

Publish with us

Policies and ethics