Skip to main content
Log in

The coefficients of quasiconformality of domains in space

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Carathéodory, C., Über das lineare Mass von Punktmengen — eine Verallgemeinerung des Längenbegriffs.Nachr. Ges. Wiss. Göttingen (1914), 404–426.

  2. Gehring, F. W., Symmetrization of rings in space.Trans. Amer. Math. Soc., 101 (1961), 499–519.

    Article  MATH  MathSciNet  Google Scholar 

  3. —, Extremal length definitions for the conformal capacity of rings in space.Michigan Math. J., 9 (1962), 137–150.

    Article  MATH  MathSciNet  Google Scholar 

  4. —, Rings and quasiconformal mappings in space.Trans. Amer. Math. Soc., 103 (1962), 353–393.

    Article  MATH  MathSciNet  Google Scholar 

  5. —, Quasiconformal mappings in space.Bull. Amer. Math. Soc., 69 (1963), 146–164.

    Article  MATH  MathSciNet  Google Scholar 

  6. —, The Carathéodory convergence theorem for quasiconformal mappings in space.Ann. Acad. Sci. Fenn. Ser. AI, 336/11 (1963), 1–21.

    Google Scholar 

  7. Hersch, J., Longueurs extrémales et théorie des fonctions.Comment. Math. Helv., 29 (1955), 301–337.

    MATH  MathSciNet  Google Scholar 

  8. Krivov, V. V., Extremal quasiconformal mappings in space.Dokl. Akad. Nauk SSSR, 145 (1962), 516–518.

    MATH  MathSciNet  Google Scholar 

  9. Loewner, C., On the conformal capacity in space.J. Math. Mech., 8 (1959), 411–414.

    MATH  MathSciNet  Google Scholar 

  10. Marstrand, J. M., Hausdorff two-dimensional measure in 3-space.Proc. London Math. Soc. (3), 11 (1961), 91–108.

    MATH  MathSciNet  Google Scholar 

  11. Newman, M. H. A.,Elements of the Topology of Plane Sets of Points. Cambridge University Press, 1954.

  12. Pólya, G. andSzegö, G.,Isoperimetric Inequalities in Mathematical Physics. Ann. of Math. Studies 27, Princeton University Press, 1951.

  13. Ŝabat, B. V., The modulus method in space.Dokl. Akad. Nauk SSSR, 130 (1960), 1210–1213.

    Google Scholar 

  14. —, On the theory of quasiconformal mappings in space.Dokl. Akad. Nauk SSSR, 132 (1960), 1045–1048.

    Google Scholar 

  15. Saks, S.,Theory of the Integral. Warsaw, 1937.

  16. Teichmüller, O., Untersuchungen über konforme und quasikonforme Abbildung.Deutsche Math., 3, (1938), 621–678.

    MATH  Google Scholar 

  17. Väisälä, J., On quasiconformal mappings in space.Ann. Acad. Sci. Fenn. Ser. AI, 298 (1961), 1–36.

    Google Scholar 

  18. —, On quasiconformal mappings of a ball.Ann. Acad. Sci. Fenn. Ser. AI, 304 (1961), 1–7.

    Google Scholar 

  19. —, On the null-sets for extremal distances.Ann. Acad. Sci. Fenn. Ser. AI, 322 (1962), 1–12.

    Google Scholar 

  20. Zoriĉ, V. A., On a correspondence of boundaries forQ-quasiconformal mappings of a sphere.Dokl. Akad. Nauk SSSR, 145 (1962), 31–34.

    MathSciNet  Google Scholar 

  21. —, Correspondence of the boundaries inQ-quasiconformal mapping of a sphere.Dokl. Akad. Nauk SSSR, 145 (1962), 1209–1212.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor C. Loewner on his seventieth birthday

This research was supported by the National Science Foundation, Contract NSF-G-18913 and Contract NSF-GP-1648.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehring, F.W., Väisälä, J. The coefficients of quasiconformality of domains in space. Acta Math. 114, 1–70 (1965). https://doi.org/10.1007/BF02391817

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02391817

Navigation