Skip to main content

Kinetics and Structure Formation in Unloaded Quiescent Melts

  • Chapter
  • First Online:
Crystallization Modalities in Polymer Melt Processing

Abstract

It goes without saying that structure formation in a permanently quiescent unloaded melt does almost never occur in practical polymer processing. In fact, flow and pressurization can almost never be avoided. Nevertheless, the present chapter will appear of great importance, as flow or pressure induced crystallization cannot be understood without a profound basic knowledge of the processes occurring in a permanently quiescent melt, which has not been put under pressure. Such a melt must be cooled down in its quiescent state from a temperature well above the equilibrium melting point, where the residues of previous crystallization processes are erased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Krevelen DW (1978) Crystallinity of polymers and the means to influence the crystallization process. Chimia 32:279–294

    Google Scholar 

  2. Fisher JC, Hollomon JH, Turnbull D (1948) Nucleation. J Appl Phys 19:775–784

    Article  CAS  Google Scholar 

  3. Janeschitz-Kriegl H, Ratajski E, Wippel H (1999) The physics of athermal nuclei in polymer crystallization. Colloid Polym Sci 277:217–226

    Article  CAS  Google Scholar 

  4. Braun J, Pillichshammer D, Eder G, Janeschitz-Kriegl H (2003) Industrial solidification processes in polybutene-1. Part I – Quiescent melts. Polym Eng Sci 43:180–187

    Article  CAS  Google Scholar 

  5. Stadlbauer M, Eder G, Janeschitz-Kriegl H (2001) Crystallization kinetics of two aliphatic polyketones. Polymer 42:3809–3816

    Article  CAS  Google Scholar 

  6. Chew S, Griffiths JR, Stachurski JH (1989) The crystallization kinetics of polyethylene under isothermal and non-isothermal conditions. Polymer 30:874–881

    Article  CAS  Google Scholar 

  7. Gandica A, Magill JH (1972) A universal relationship for the crystallization kinetics of polymer materials. Polymer 13:595–596

    Article  CAS  Google Scholar 

  8. Ratajski E, Janeschitz-Kriegl H (1996) How to determine high growth speeds in polymer crystallization. Colloid Polym Sci 274:938–951

    Article  CAS  Google Scholar 

  9. Janeschitz-Kriegl H, Eder G, Stadlbauer M, Ratajski E (2005) A thermodynamic frame for the kinetics of polymer crystallization under processing conditions. Monatshefte für Chemie (Chemical Monthly) 136:1119–1137

    Article  CAS  Google Scholar 

  10. Turner-Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 74:134–158

    Article  Google Scholar 

  11. Wunderlich B (1973) Macromolecular Physics, vol 1. Academic, London, p 282

    Google Scholar 

  12. Lovinger AJ, Chua JO, Gryte CC (1977) Studies of the α and β forms of isotactic polypropylene by crystallization in a temperature gradient. J Polym Sci Polym Phys Ed 15:641–656

    Article  CAS  Google Scholar 

  13. Janeschitz-Kriegl H, Wimberger-Friedl R, Krobath G, Liedauer S (1987) On the development of layer structures in injected plastic parts (in German). Kautschuk + Gummi, Kunststoffe 40:301–307

    Google Scholar 

  14. Eder G, Janeschitz-Kriegl H, Liedauer S (1990) Crystallization processes in quiescent and moving polymer melts under heat transfer conditions. Prog Polym Sci 15:627–714

    Article  Google Scholar 

  15. Eder G, Janeschitz-Kriegl H (1997) Processing of polymers: crystallization. Mater Sci Technol 18:269–342

    Google Scholar 

  16. Berger J, Schneider W (1986) A zone model of rate controlled solidification. Plastics Rubber Process Appl 6:127–133

    Google Scholar 

  17. Stein RS, Rhodes MB (1960) Photographic light scattering by polyethylene films. J Appl Polym Sci 31:1873–1884

    CAS  Google Scholar 

  18. Keijzers AEM (1967) Light scattering by crystalline polystyrene and polypropylene. Doctoral thesis. Delft, The Netherlands, p 23

    Google Scholar 

  19. Keijzers AEM, Van Aartsen JJ, Prins W (1968) Light scattering by crystalline polystyrene and polypropylene. J Am Chem Soc 90:3107–3113

    Article  CAS  Google Scholar 

  20. Van Antwerpen F (1971) Kinetics of crystallization phenomena of spherulites in poly(ethylene terephthalate). Doctoral thesis Delft, The Netherlands

    Google Scholar 

  21. Van Antwerpen F, Van Krevelen DW (1972) Light scattering method for investigation of the kinetics of crystallization of spherulites. J Polym Sci Polym Phys Ed 10:2409–2421

    Google Scholar 

  22. Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, Amsterdam, pp 594–603

    Google Scholar 

  23. Magill JH (1967) Crystallization of poly(tetra methyl-p-silphenylene)siloxane. J Polym Sci A2 5:89–99

    Google Scholar 

  24. Heijboer J (1968) Study of the movements of cycloalkyl side groups in polymethacrylates by dynamic mechanical measurements. J Polym Sci C 16:3413–3422

    Google Scholar 

  25. Ziabicki A, Alfonso GC (1994) Memory effects in isothermal crystallization I. Colloid Polym Sci 272:1027–1042

    Article  CAS  Google Scholar 

  26. Mandelkern L, Kim H (1968) Temperature dependence of the bulk crystallization rate of polymers. J Polym Sci A-2 6:965–706

    Google Scholar 

  27. Hoffman JD (1964) Theoretical aspects of polymer crystallization with chain folding: bulk polymers. SPE Trans 4:315–362

    CAS  Google Scholar 

  28. Williams ML, Landel RF, Ferry JD (1955) Temperature dependence of relaxation mechanisms in amorphous polymers and other glass forming liquids. J Am Chem Soc 77:3701–3707

    Article  CAS  Google Scholar 

  29. Hoffman JD, Davis GT, Lauritzen JI Jr (1976) In: Hannay NB (ed) Treatise on solid state chemistry, vol 3, chap. 7. Plenum, New York

    Google Scholar 

  30. Clark EJ, Hoffman JD (1984) Regime III crystallization in polypropylene. Macromolecules 17:878–885

    Article  CAS  Google Scholar 

  31. Van Antwerpen F, Van Krevelen DW (1972) Influence of crystallization temperature, molar weight and additives on the crystallization kinetics of poly (ethylene terephthalate). J Polym Sci Polym Phys Ed 10:2423–2435

    Google Scholar 

  32. Mandelkern L (2004) Crystallization of polmyers, vol 2, Kinetics and mechanisms, 2nd edn. Cambridge university Press, Cambridge, pp 1–204

    Google Scholar 

  33. Hoffman JD, Miller RL (1997) Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 38:3151–3212

    Article  CAS  Google Scholar 

  34. Lauritzen JI Jr, Hoffman JD (1960) Theory of formation of polymer crystals with folded chains in dilute solution. J Res Nat Bur Stand 64A:73–102

    Google Scholar 

  35. Hoffman JD, Lauritzen JI Jr (1961) Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites. J Res Nat Bur Stand 65A:297–336

    Google Scholar 

  36. Blundell DJ, Keller A, Kovacs AJ (1966) A new self-nucleation phenomenon and its application to the growing of polymer crystals from solution. Polym Lett 4:481–486

    Google Scholar 

  37. Larson MA, Garside J (1986) Solute clustering in supersaturated solutions. Chem Eng Sci 41:1285–1289

    Article  CAS  Google Scholar 

  38. Larson MA, Garside J (1986) Solute clustering and surface tension. J Cryst Growth 76:88–92

    Article  CAS  Google Scholar 

  39. Becker R, Döring W (1935) Kinetic treatment of nucleation in supersaturated vapour (in German). Ann Phys 5(24):719–752

    Google Scholar 

  40. Tolman RC (1949) The effect of droplet size on the surface tension. J Chem Phys 17:331–337

    Google Scholar 

  41. Rusli IT, Larson MA (1987) Solute cluster formation in saturated solutions. In: Stratman, Klein, Melis (eds) Cryst Precip Proc Int Symp. Pergamon, Oxford, p 71

    Google Scholar 

  42. Janeschitz-Kriegl H (1997) Conditions of nucleation in crystallizable polymers, a reconnaisance of positions. Colloid Polym Sci 275:1121–1135

    Article  CAS  Google Scholar 

  43. Pechhold W, Hauber MET, Liska E (1973) Meander model of amorphous polymers. Kolloid Z, Z Polym 251:818–828

    Article  CAS  Google Scholar 

  44. Eder G, Janeschitz-Kriegl H, Krobath G (1989) Shear induced crystallization, a relaxation phenomenon in polymer melts. Progr Colloid Polym Sci 80:1–7

    Article  CAS  Google Scholar 

  45. Janeschitz-Kriegl H, Eder G (2007) Shear induced crystallization, a relaxation phenomenon in polymer melts: a recollection. J Macromol Sci B Phys 46:1–11

    Article  Google Scholar 

  46. Keller A (1957) Single crystals in polymers: evidence of folded chain configuration. Philos Mag 2:1171–1175

    Article  CAS  Google Scholar 

  47. Olsen AP, Flagan RC, Kornfield JA (2006) Manipulation of athermal nuclei in aqueous poly (ethylene oxide) by scanning activity gravimetric analysis. Macromolecules 39:8419–8427

    Article  CAS  Google Scholar 

  48. Strobl G (1996) The physics of polymers. Springer, Berlin, p 160

    Google Scholar 

  49. Prime RB, Wunderlich B, Melillo L (1969) Extended chain crystals V. Thermal analysis and electron microscopy of the melting process in polyethylene. J Polym Sci A-2 7:2091–2099

    Google Scholar 

  50. Bassett DC (1981) Principles of polymer morphology. Cambridge University Press, Cambridge, p 168

    Google Scholar 

  51. Woodward AE (1989) Atlas of polymer morphology. Hanser, Germany, pp 106–115

    Google Scholar 

  52. Hoffman JD, Weeks JJ (1962) Melting process and equilibrium melting temperature of poly (chloro trifluoro ethylene). J Res Nat Bur Stand A66:13–28

    Google Scholar 

  53. Marand H, Xu J, Srinivas S (1998) Determination of the equilibrium melting temperature of polymer crystals: linear and non-linear Hoffman-Weeks extrapolation. Macromolecules 31:8219–8229

    Article  Google Scholar 

  54. Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382

    Article  CAS  Google Scholar 

  55. Pogodina NV, Winter HH (1998) Polypropylene crystallization as a physical gelation process. Macromolecules 31:8164–8172

    Article  CAS  Google Scholar 

  56. Acierno S, Grizzuti N (2003) Measurement of the rheological behavior of a crystallizing polymer by the “inverse quenching” technique. J Rheol 47:569–576

    Article  Google Scholar 

  57. Janeschitz-Kriegl H (2003) How to understand nucleation in crystallizing polymer melts under real processing conditions. Colloid Polym Sci 281:1157–1171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Janeschitz-Kriegl .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Janeschitz-Kriegl, H. (2010). Kinetics and Structure Formation in Unloaded Quiescent Melts. In: Crystallization Modalities in Polymer Melt Processing. Springer, Vienna. https://doi.org/10.1007/978-3-211-87627-5_2

Download citation

Publish with us

Policies and ethics