Skip to main content

Design of Biological Organisms and Fractal Geometry

  • Chapter
Fractals in Biology and Medicine

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Abstract

This paper explores the question whether fractal geometry forms an important basis for determining the design of biological organisms during morphogenesis. It is first observed that functionally important internal surfaces such as the intracellular membranes of the liver or the gas exchange surface of the lung have characteristics of fractal surfaces in that the surface area measured depends on the microscopic resolution. However, these surfaces are fractal within bounds and the sequential occurrence of different “generators” of surface texture may require several fractal regressions. It is secondly noted that airways and vascular trees show the properties of fractal trees and that this may offer significant functional advantages. The question is finally raised whether and to what extent fractal constructive algorithms may form part of genetic programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gehr P., M. Bachofen, and E.R. Weibel (1978) The normal human lung: ultra-structure and morphometric estimation of diffusion capacity. Respir. Physiol. 32: 121–140.

    Article  PubMed  CAS  Google Scholar 

  2. Haefeli-Bleuer B., and E.R. Weibel (1988) Morphometry of the human pulmonary acinus. Anat. Rec. 220: 401–414.

    Article  PubMed  CAS  Google Scholar 

  3. Hess W.R. (1903) Eine mechanisch bedingte Gesetzmässigkeit im Bau des Blutgefässsystems. Arch. Entwickl. Mech. Org. 16: 632–641.

    Article  Google Scholar 

  4. Hoppeler H., and S.R. Kayar (1988) Capillarity and oxidative capacity of muscle. New Physiol. Sci. 3: 113–116.

    Google Scholar 

  5. Keller Hj., H.P. Friedli, P. Gehr, M. Bachofen, and E.R. Weibel (1975) The effects of optical resolution on the estimation of stereological parameters. Proc. Fourth Internat. Congr. Stereology. Gaithersburg, 1975. National Bureau of Standards, Spec. Publ. 431: 409–410.

    Google Scholar 

  6. Kleiber M. (1961) The Fire of Life. New York, Wiley.

    Google Scholar 

  7. Krenz G.S., J.H. Linehan, and C.A. Dawson (1992) A fractal continuum model of the pulmonary arterial tree. J. Appl. Physiol. 72:2225–2237.

    PubMed  CAS  Google Scholar 

  8. Loud A.V. (1968) A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J. Cell Biol. 37:27.

    Article  PubMed  CAS  Google Scholar 

  9. Mandelbrot B. (1977) Form, Chance, and Dimension. New York, Freeman.

    Google Scholar 

  10. Mandelbrot B. (1983) The Fractal Geometry of Nature. New York, Freeman.

    Google Scholar 

  11. Nelson T.R., and D.K. Manchester (1988) Modeling of lung morphogenesis using fractal geometries. IEEE Trans. Med. Imaging 7: 321–327.

    Article  PubMed  CAS  Google Scholar 

  12. Nelson T.R., B.J. West, and A.L. Goldberger (1990) The fractal lung: universal and species-related scaling patterns. Experientia Basel 46: 251–254.

    Article  CAS  Google Scholar 

  13. Paumgartner D., G. Losa, and E.R. Weibel (1981) Resolution effect on the stereological estimation of surface and volume and its interpretation in terms of fractal dimensions. J. Microsc. 121: 51–63.

    Article  PubMed  CAS  Google Scholar 

  14. Rigaut J.P. (1984) An empirical formulation relating boundary lengths to resolution in specimens showing “non-ideally fractal” dimensions. J. Microsc. 133: 41–54.

    Article  Google Scholar 

  15. Schmidt-Nielsen K. (1984) Scaling: Why is animal size so important? Cambridge UK, Cambridge University Press.

    Book  Google Scholar 

  16. Sernetz M., H.R. Bittner, and P. Wlczek (1988) Fraktale biologische Strukturen. Spiegel der Forschung 5: 8–11.

    Google Scholar 

  17. Sernetz M., H. Willems, and H.R. Bittner (1989) Fractal organization of metabolism. In: Energy Transformations in Cells and Organisms. Eds: W. Wieser and E. Gnaiger. Stuttgart-New York, Thieme, 82–90.

    Google Scholar 

  18. Spatz H.-C. (1991) Circulation, metabolic rate, and body size in mammals. J. Comp. Physiol. B 161: 231–236.

    Article  PubMed  CAS  Google Scholar 

  19. Suwa N., and T. Takahashi (1971) Morphological and Morphometrical Analysis of Circulation in Hypertension and Ischemic Kidney. Munich, FRG: Urban and Schwarzenberg.

    Google Scholar 

  20. Thoma R. (1901) Ueber den Verzweigungsmodus der Arterien. Arch. Entwicklungsmech. 12: 352–413.

    Article  Google Scholar 

  21. Thompson, D’A.W. (1942) On Growth and Form. Cambridge UK, Cambridge University Press.

    Google Scholar 

  22. Weibel E.R. (1963) Morphometry of the Human Lung. Heidelberg, Springer-Verlag; New York, Academic Press.

    Google Scholar 

  23. Weibel E.R. (1964) Morphometrics of the lung. In: The Handbook of Physiology. American Physiological Society, Respiration Section, Vol. 1, Chapter 7, 285–307.

    Google Scholar 

  24. Weibel E.R., G.S. Kistler, and W.F. Scherle (1966) Practical stereological methods for morphometric cytology. J. Cell Biol. 30: 23–38.

    Article  PubMed  CAS  Google Scholar 

  25. Weibel E.R. (1979) Stereological Methods. Vol. I: Practical Methods for Biological Morphometry. London-New York-Toronto, Academic Press.

    Google Scholar 

  26. Weibel E.R. (1984) The Pathway for Oxygen. Cambridge MA, Harvard University Press.

    Google Scholar 

  27. Weibel E.R. (1991a) Design of airways and blood vessels considered as branching trees. In: The Lung: Scientific Foundations. Eds: R. G. Crystal, J.B. West, P.J. Barnes, N.S. Cherniack and E.R. Weibel. New York, Raven, 711–720.

    Google Scholar 

  28. Weibel E.R. (1991b) Fractal geometry: a design principle for living organisms. Am. J. Physiol. 261: L361–L369.

    PubMed  CAS  Google Scholar 

  29. Weibel E.R., and D.M. Gomez (1962) Architecture of the human lung. Science 137: 577–585.

    Article  PubMed  CAS  Google Scholar 

  30. Weibel E.R., W. Stäubli, H.R. Gnägi, and F.A. Hess (1969) Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods and normal morphometric data for rat liver. J. Cell Biol. 42: 68–91.

    Article  PubMed  CAS  Google Scholar 

  31. Weibel E.R., and C.R. Taylor (1981) Design of the mammalian respiratory system. Respir. Physiol. 44: 1–164.

    Article  PubMed  Google Scholar 

  32. Weibel E.R., C.R. Taylor, and H. Hoppeler (1992) Variations in function and design: Testing symmorphosis in the respiratory system. Respir. Physiol. 87: 325–348.

    Article  PubMed  CAS  Google Scholar 

  33. West B.J., V. Barghava, and A.L. Goldberger (1986) Beyond the principle of similitude: renormalization in the bronchial tree. J. Appl. Physiol. 60: 1089–1097.

    PubMed  CAS  Google Scholar 

  34. Wilson T.A. (1967) Design of the bronchial tree. Nature 213: 668–669.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this chapter

Cite this chapter

Weibel, E.R. (1994). Design of Biological Organisms and Fractal Geometry. In: Nonnenmacher, T.F., Losa, G.A., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8501-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8501-0_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9652-8

  • Online ISBN: 978-3-0348-8501-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics