Skip to main content
Log in

The fractal lung: Universal and species-related scaling patterns

  • Research Articles
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The mammalian lung exhibits features of a fractal tree: heterogeneity, self-similarity and the absence of a characteristic scale. The finite nature of the lung ultimately limits the range over which self-similarity scaling characteristics are applicable. However, generalization based on the scaling features of fractals, provides unique insight into geometric organization of anatomic structures. Furthermore, the mathematical theory of renormalization groups provides a description of the harmonically-modulated inverse power-law scaling observed for bronchial tree dimensions observed in different species. Compared to several mammalian species (dog, rat, hamster), the human lung shows marked differences in the phase of the harmonic modulation for both length and diameter measurements. These inter-species scaling differences suggest that evolutionary factors modify certain universal features of morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weibel, E. R., and Gomez, D. M., Science127 (1962) 577.

    Article  Google Scholar 

  2. Goldberger, A. L., and West, B. J., Yale J. biol. Med.60 (1988) 421.

    Google Scholar 

  3. Raabe, O., Yeh, H., Schum, G., and Phalen, R., Tracheobronchial Geometry: Human, Dog, Rat, Hamster (LF-53). Government Printing Office, Washington, DC 1976.

    Google Scholar 

  4. Horsfield, K., and Cumming, G., J. appl. Physiol.24 (1968) 373.

    Article  CAS  PubMed  Google Scholar 

  5. Horsfield, K., Dart, G., Olson, D., Filley, G., and Cumming, G., J. appl. Physiol.31 (1971) 207.

    Article  CAS  PubMed  Google Scholar 

  6. Parker, H., Horsfield, K., and Cumming, G., J. appl. Physiol.31 (1971) 386.

    Article  CAS  PubMed  Google Scholar 

  7. Phalen, R., Yeh, H., Schum, G., and Raabe, O., Anat. Rec.190 (1978) 167.

    Article  CAS  PubMed  Google Scholar 

  8. MacDonald, N., Trees and Networks in Biological Models. Wiley, New York 1983.

    Google Scholar 

  9. West, B. J., Bhargava, V., and Goldberger, A. L., J. appl. Physiol.60 (1986) 1089.

    Article  CAS  PubMed  Google Scholar 

  10. Shlesinger, M. F., and Hughes, B. D., Physica109A (1981) 597.

    Article  Google Scholar 

  11. West, B. J., and Goldberger, A. L., Am. Scient.75 (1987) 354.

    Google Scholar 

  12. West, B. J., Fractals Intermittency and Morphogenesis, in: Chaos in Biological Systems. Eds. H. Degn, A. V. Holden and L. F. Olsen. Plenum, New York 1987.

    Google Scholar 

  13. Montroll, E. W., and Shlesinger, M. F., J. stat. Phys.32 (1983) 209–230.

    Article  Google Scholar 

  14. Bevington, P. R., Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York 1969.

    Google Scholar 

  15. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical Recipes. Cambridge University Press, New York 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, T.R., West, B.J. & Goldberger, A.L. The fractal lung: Universal and species-related scaling patterns. Experientia 46, 251–254 (1990). https://doi.org/10.1007/BF01951755

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01951755

Key words

Navigation