Skip to main content

Seeing meiotic chromosomes without seeing them

  • Chapter
Chromosomes Today
  • 229 Accesses

Abstract

Cytological visualization of meiotic chromosomes has revealed the fundamental basis for Mendelian inheritance and for the exceptions to Mendel’s rules provided by genetic linkage and recombination as well as revealing and describing many complex aspects of chromosome morphogenesis (for recent review, see [1]). As a complement to cytological approaches, our laboratory has developed assays which provide other ways of probing chromosome organization and behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zickler D, Kleckner N (1998) The leptotene-zygotene transition of meiosis.Annu Rev Genet32: 619–697

    Article  CAS  PubMed  Google Scholar 

  2. Kleckner N, Weiner BM (1993) Potential advantages of unstable interactions for pairing of chromosomes in meiotic, somatic and premeiotic cells.Cold Spring Harbor Symp Quant Biol58: 553–565

    Article  CAS  PubMed  Google Scholar 

  3. Scherthan H, Loidl J, Schuster T, Schweizer D (1992) Meiotic chromosome condensation and pairing inSaccharomyces cerevisiaestudied by chromosome painting.Chromosoma101: 590–595

    Article  CAS  PubMed  Google Scholar 

  4. Scherthan H, Eils R, Trelles-Sticken E, Dietzel S, Cremer T, Walt H, Jauch A (1998) Aspects of three-dimensional chromosome reorganization during the onset of human male meiotic prophase.J Cell Sci111: 2337–2351

    CAS  PubMed  Google Scholar 

  5. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989)In situlocalization of parental genomes in a wide wheat hybrid.Ann Bot64: 315–324

    Google Scholar 

  6. Weiner BM, Kleckner N (1994) Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast.Cell77: 977–991

    Article  CAS  PubMed  Google Scholar 

  7. Burgess SM, Kleckner N, Weiner BM (1999) Somatic pairing of homologs in budding yeast: existence and modulation.Gene Develop13: 1627–1641

    Article  CAS  Google Scholar 

  8. Cha RS, Weiner BM, Keeney S, Dekker J, Kleckner N (1999) Progression of meiotic DNA replication is regulated by interchromosomal interaction proteins, negatively by Spol 1p and positively by Rec8p.Gene Develop14: 493–503

    Google Scholar 

  9. Stack SM, Brown WV (1969) Somatic pairing, reduction and recombination: an evolutionary hypotehsis of meiosis.Nature222: 1275–1276

    Article  CAS  PubMed  Google Scholar 

  10. Keeney S, Kleckner N (1996) Communication between homologous chromosomes: genetic alterations at a nuclease-hypersensitive site can alter mitotic chromatin structure at that site both incisand intrans. Genes Cells1: 475–489

    Article  CAS  Google Scholar 

  11. Baudat F, Nicolas A (1997) Clustering of meiotic double-strand breaks on yeast chromosome III.Proc Natl Acad Sci USA94: 5213–5218

    Article  CAS  PubMed  Google Scholar 

  12. Wu TC, Lichten M (1994) Meiosis-induced double-strand break sites determined by yeast chromatin structure.Science263: 515–518

    Article  CAS  PubMed  Google Scholar 

  13. Xu L, Kleckner N (1995) Sequence non-specific double strand breaks and interhomolog interactions prior to double strand break formation at a meiotic recombination hot spot in yeast.EMBO J14: 5115–5128

    CAS  PubMed  Google Scholar 

  14. Rocco V, Nicolas A (1996) Sensing of DNA non-homology lowers the initiation of meiotic recombination in yeast.Genes Cells1: 645–661

    Article  CAS  PubMed  Google Scholar 

  15. Burgess SM, Kleckner N (1999) Collisions between yeast chromosomal lociin vivoare governed by three layers of organization.Gene Develop13: 1871–1883

    Article  CAS  Google Scholar 

  16. Cao L, Alani E, Kleckner N (1990) A pathway for generation and processing of double-strand breaks during meiotic recombination inS. cerevisiae. Cell61: 1089–1101

    CAS  Google Scholar 

  17. Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spol 1, a member of a widely conserved protein family.Cell88: 375–384

    Article  CAS  PubMed  Google Scholar 

  18. Alani E, Padmore R, Kleckner N (1990) Analysis of wild type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination.Cell61: 419–436

    Article  CAS  PubMed  Google Scholar 

  19. Bishop DK, Park D, Xu L, Kleckner N (1992)DMCI:a meiosis-specific yeast homolog of bacterialrecArequired for meiotic recombination, synaptonemal complex formation and cell cycle progression.Cell69: 439–456

    Article  CAS  PubMed  Google Scholar 

  20. Padmore R, Cao L, Kleckner N (1991) Temporal comparison of recombination and synaptonemal complex formation during meiosis inS. cerevisiae. Cell66: 1239–1256

    CAS  Google Scholar 

  21. Storlazzi A, Xu L, Cao L, Kleckner N (1995) Crossover and noncrossover recombination during meiosis: timing and pathway relationships.Proc Natl Acad Sci USA92: 8512–8516

    Article  CAS  PubMed  Google Scholar 

  22. Xu L, Ajimura M, Padmore R, Klein C, Kleckner N (1995)NDT80:a meiosis-specific gene required for exit from pachytene in yeast.Mol Cell Biol15: 6572–6581

    CAS  PubMed  Google Scholar 

  23. Rose D, Holm C (1993) Meiosis-specific arrest revealed in DNA topoisomerase II mutants.Mol Cell Biol13: 3445–3455

    CAS  PubMed  Google Scholar 

  24. Kleckner N (1996) Meiosis: how could it work?Proc Natl Acad Sci USA93: 8167–8174

    Article  CAS  PubMed  Google Scholar 

  25. Goyon C, Lichten M (1993) Timing of molecular events in meiosis inSaccharomyces cerevisiae:stable heteroduplex DNA is formed late in meiotic prophase.Mol Cell Biol13 (1): 373–382

    CAS  PubMed  Google Scholar 

  26. Schwacha A, Kleckner N (1995) Identification of double Holliday junctions as intermediates in meiotic recombination.Cell83: 783–791

    Article  CAS  PubMed  Google Scholar 

  27. Bell LR, Byers B (1983) Homologous association of chromosomal DNA during yeast meiosis.Cold Spring Harbor Symp Quant Biol47: 829–840

    Article  PubMed  Google Scholar 

  28. Byers B, Hollingsworth NM (1994) Meiosis. DNA branching during meiotic recombination.Curr Biol4: 448–451

    Article  CAS  PubMed  Google Scholar 

  29. Nassif N, Penney J, Pal S, Engels WR, Gloor GB (1994) Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair.Mol Cell Biol14: 1613–1625

    CAS  PubMed  Google Scholar 

  30. Whitby MC, Dixon J (1998) Substrate specificity of the SpCCE1 holliday junction resolvase ofSchizosaccharomyces pombe. J Biol Chem273: 35063–35073

    Article  CAS  Google Scholar 

  31. Kleff S, Kemper B, Sternglanz R (1992) Identification and characterization of yeast mutants and the gene for a cruciform cutting endonuclease.EMBO J 11:699–704

    CAS  PubMed  Google Scholar 

  32. Wang JC, Caron PR, Kim RA (1990) The role of DNA topoisomerases in recombination and genome stability: a double-edged sword?Cell62: 403–406

    Article  CAS  PubMed  Google Scholar 

  33. Lydall D, Nikolsky Y, Bishop DK, Weinert T (1996) A meiotic recombination checkpoint controlled by mitotic checkpoint genes.Nature383: 840–843

    Article  CAS  PubMed  Google Scholar 

  34. Xu L, Weiner BM, Kleckner N (1996) Meiotic cells monitor the status of the interhomolog recombination complex.Gene Develop11: 106–118

    Article  Google Scholar 

  35. Sym M, Engebrecht J, Roeder GS (1993) ZIPI is a synaptonemal complex protein required of meiotic chromosome synapsis.Cell72: 365–378

    Article  CAS  PubMed  Google Scholar 

  36. Moens PB, Pearlman RE, Heng HHQ (1998) Chromosome cores and chromatin at meiotic prophase.Curr Topic Develop Biol37: 241–262

    Article  CAS  Google Scholar 

  37. Schwacha A, Kleckner N (1997) Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway.Cell90: 1123–1135

    Article  CAS  PubMed  Google Scholar 

  38. Smith AV, Roeder GS (1997) The yeast Red1 protein localizes to the cores of meiotic chromosomes.J Cell Biol136: 957–967

    Article  CAS  PubMed  Google Scholar 

  39. Bailis JM, Roeder GS (1998) Synaptonemal complex morphogenesis and sister-chromatid cohesion require Mekl-dependent phosphorylation of a meiotic chromosomal protein.Gene Develop12: 3551–3563

    Article  CAS  Google Scholar 

  40. Jones GH (1984) The control of chiasma distribution. In: CW Evans, HG Dickinson (eds):Controlling Elements in Meiosis. Symp Soc Exp Biol38: 293–320

    Google Scholar 

  41. Jones GH (1987) Chiasmata. In: PB Moens (ed.):Meiosis.Academic Press, New York, 213–244

    Google Scholar 

  42. Holliday R (1964) A mechanism for gene conversion in fungi.Genet Res5: 282–304

    Article  Google Scholar 

  43. Roeder GS (1997) Meiotic chromosomes: it takes two to tango.Gene Develop 11:2600–2621

    Article  CAS  Google Scholar 

  44. Storlazzi A, Xu L, Schwacha A, Kleckner N (1996) Synaptonemal complex component Zipl plays a role in meiotic recombination independent of SC polymerization along the chromosomes.Proc Natl Acad Sci USA93: 9043–9048

    Article  CAS  PubMed  Google Scholar 

  45. Sobell HM (1974) Concerning the stereochemistry of strand equivalence in genetic recombination. In: RF Grell (ed.):Mechanisms in Recombination.Plenum Press, New York, 433–438

    Chapter  Google Scholar 

  46. Albini SM, Jones GH (1987) Synaptonemal complex spreading inAllium cepaand A.fistulosum.I. The initiation and sequence of pairing.Chromosoma95: 324–338

    Article  Google Scholar 

  47. Egel R (1978) Synaptonemal complex and crossing over: structural support or interference?Heredity41: 233–237

    Article  CAS  PubMed  Google Scholar 

  48. Egel R (1995) The synaptonemal complex and the distribution of meiotic recombination events.Trends Genet11: 206–208

    Article  CAS  PubMed  Google Scholar 

  49. King JS, Mortimer RK (1990) A polymerization model of chiasma interference and corresponding computer simulation.Genetics126: 1127–1138

    CAS  PubMed  Google Scholar 

  50. Biggins S, Murray AW (1998) Sister chromatid cohesion in mitosis.Curr Opin Cell Biol10: 769–775

    Article  CAS  PubMed  Google Scholar 

  51. Hirano T (1998) SMC protein complexes and higher-order chromosome dynamics.Curr Opin CellBiol10: 317–322

    Article  CAS  Google Scholar 

  52. Parisi S, McKay MJ, Molnar M, Thompson A, van der Spek PJ, van Drunen-Schoenmaker E Kanaar R, Lehman E Hoeijmakers JHJ, Kohli J (1999) Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans.Mol Cell Biol19: 3515–3528

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Kleckner, N. (2000). Seeing meiotic chromosomes without seeing them. In: Olmo, E., Redi, C.A. (eds) Chromosomes Today. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8484-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8484-6_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9587-3

  • Online ISBN: 978-3-0348-8484-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics