Skip to main content

Repetitive DNA as a tool to study the phylogeny of cold-blooded vertebrates

  • Chapter
Chromosomes Today

Abstract

At the end of the 60s, when scientists found out that repetitive DNA sequences were part of the eukaryotic genomes [1, 2], they could not foresee that they would be very useful markers for molecular and cytogenetic analysis and to investigate the phylogenetic relationships between closely related species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Britten R, Kohne D (1968) Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms.Science161: 529–540

    Article  CAS  PubMed  Google Scholar 

  2. Walker PMB (1971) Repetitive DNA in higher organisms.Prog Biophys Mol Biol23: 145–190

    Article  CAS  PubMed  Google Scholar 

  3. John B, Miklos GLG (1977) Functional aspects of satellite DNA and heterochromatin. In: G Bourne and J Danielli (eds):Int Rev Cytol58, Academic Press, New York, San Francisco and London, 1–113

    Google Scholar 

  4. Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution.Nature284: 601–603

    Article  CAS  PubMed  Google Scholar 

  5. Kurnit DM (1979) Satellite DNA and heterochromatin variants. The case for unequal mitotic crossing over.Hum Genet47: 169–186

    Article  CAS  PubMed  Google Scholar 

  6. Smith GP (1976) Evolution of repeated DNA sequences by unequal crossover.Science191: 528–535

    Article  CAS  PubMed  Google Scholar 

  7. Berg DE, Howe MM (eds) (1989)Mobile DNA.American Society for Microbiology, Washington DC

    Google Scholar 

  8. Miklos GLG (1985) Localized highly repetitive DNA sequences in vertebrates and invertebrates genomes. In: RJ Maclntyre (ed.):Mol Evol GenetPlenum Publ Corporation, 241–319

    Google Scholar 

  9. Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes.Nature371: 215–220

    Article  CAS  PubMed  Google Scholar 

  10. Haaf T, Warburton PE, Willard HF (1992) Integration of human alpha-satellite DNA into simian chromosomes: Centromere protein binding and disruption of normal chromosome segregation.Cell70: 681–696

    Article  CAS  PubMed  Google Scholar 

  11. Dernburg AF, Sedat JW, Hawley RS (1996) Direct evidence of a role for heterochromatin in meiotic chromosome segregation.Cell86: 135–146

    Article  CAS  PubMed  Google Scholar 

  12. Lica LM Narayanswami S, Hamkalo BA (1986) Mouse satellite DNA, centromere structure, and sister chromatid pairing.J Cell Biol103: 1145–1151

    Article  CAS  PubMed  Google Scholar 

  13. Warburton PE, Cooke HJ (1997) Hamster chromosomes containing amplified human alpha-satellite DNA show delayed sister chromatid separation in the absence ofde novokinetochore formation.Chromosoma106: 149–159

    Article  CAS  PubMed  Google Scholar 

  14. Ahmad K, Golik KG (1996) Somatic reversion of chromosomal position effects inDrosophila melanogaster. Genetics144: 657–670

    CAS  Google Scholar 

  15. Masumoto H, Kenji S, Tuneko O (1989) Alphoid satellite DNA is tightly associated with centromere antigens in human chromosomes throughout the cell cycle.Exp Cell Res181: 181–196

    Article  CAS  PubMed  Google Scholar 

  16. Ikeno M, Masumoto H, Okazaki T (1994) Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long range a—satellite DNA arrays of human chromosome 21.Hum Mol Genet3: 1245–1257

    Article  CAS  PubMed  Google Scholar 

  17. Sugimoto K, Furukawa K, Mikeno M (1994) Functional cloning of centromere protein B (CENP-B) box enriched alphoid DNA repeats utilizing the sequence-specific DNA binding activity of human CENP-Bin vitro. Chromosome Res2: 453–459

    Article  CAS  Google Scholar 

  18. Cooke CA, Bemat RL, Eamshaw WC (1990) CENP-B: a major human centromere protein located beneath the kinetochore.J Cell Biol110: 1475–1488

    Article  CAS  PubMed  Google Scholar 

  19. Sullivan RF, Glass GA (1991) CENP-B is a highly conserved mammalian centromere protein with homology to the helix-loop-helix family of proteins.Chromosoma100: 360–370

    Article  CAS  PubMed  Google Scholar 

  20. Hughes AL, Hughes MK (1995) Small genomes for better flyers.Nature377 (6548): 391

    Article  CAS  PubMed  Google Scholar 

  21. Hinegardner RT (1968) Evolution of cellular DNA content in teleost fishes.Amer Naturalist102: 517–523

    Article  Google Scholar 

  22. Hudson AP, Cuny G, Cortadas J, HaschemeyerAE, Bernardi G (1980) An analysis of fish genomes by density gradient centrifugation.Eur J Biochem112: 203–210

    CAS  Google Scholar 

  23. Bernardi G, Bernardi G (1990) Compositional patterns in the nuclear genome of cold-blooded vertebrates.J Mol Evol31: 265–281

    Article  CAS  PubMed  Google Scholar 

  24. Haaf T, Schmid M, Steinlein C, Galetti PM, Jr Willard HF (1993) Organization and molecular cytogenetics of a satellite DNA family fromHoplias malabaricus(Pisces, Erythrinidae).Chromosome Res1: 77–86

    Article  CAS  PubMed  Google Scholar 

  25. Kubota S, Kuro-o M, Mizuno S, Kohno S (1993) Germ line-restricted repeated DNA sequences and their chromosomal localization in a Japanese hagfish(Eptatretus okinoseanus). Chmmosoma102: 163–173

    CAS  Google Scholar 

  26. Capriglione T, Morescalchi A, Olmo E, Rocco L, Stingo V, Manzo S (1994) Satellite DNAs, heterochromatin and sex chromosomes inChionodraco hamatus(Channichthyidae, Perciformes).Polar Biol14: 285–290

    Article  Google Scholar 

  27. Hartley SE, Davidson WS (1994) Distribution of satellite DNA sequences isolated from Artic charrSalvelinus alpinusin the genus Salvelinus. Can J Fish Aquat Sci 51: 277–283

    Article  CAS  Google Scholar 

  28. Garrido-Ramos MA, Jamilena M, Lozano R, Ruiz Rejon C, Ruiz Rejon M (1994) Cloning and characterization of a fish centromeric satellite DNA.Cytogenet Cell Genet65: 233–237

    Article  CAS  PubMed  Google Scholar 

  29. Elder JF, Turner BJ (1994) Concerted evolution at the population level: Pupfish HindIll satellite DNA sequences.Proc Natl Acad Sci USA91: 994–998

    Article  CAS  PubMed  Google Scholar 

  30. Reed KM, Phillips RB (1995) Molecular characterization and cytogenetic analysis of highly repeated DNAs of lake troutSalvelinus namayscush. Chromosome Res104: 242–251

    Article  CAS  Google Scholar 

  31. Murata S, Takasaki T, Saitoh M, Okada N (1993) Determination of the phylogenetic relationships among Pacific sahnonids by using short interspersed elements (SINEs) as temporal land marks of evolution.Proc Natl Acad Sci USA90: 6995–6999

    Article  CAS  PubMed  Google Scholar 

  32. Murata S, Takasaki T, Saitoh M, Tachida H, Okada N (1996) Details of retropositional genome dynamics that provide a rationale for a generic division: the distinct branching of all the pacific salmon ant trout(Oncorhynchus)from the atlantic salmon and trout(Salmo). Genetics142: 915–926

    CAS  PubMed  Google Scholar 

  33. Takasaki N, Yamaki T, Hamada M, Park L, Okada N (1997) The salmon Sma I family of Short Intersersed Repetitive Elements (SINEs): interspecific and intraspecific variation on the insertion of SINEs in the genomes of chum and pink salmon.Genetics146: 369–380

    CAS  PubMed  Google Scholar 

  34. Takahashi K, Terai Y, Nishida M, Okada N (1998) A novel family of Short Intersersed Repetitive Elements (SINEs) from cichlids: The patterns of insertion of SINEs at orthologous loci support the proposed monophyly of four major groups of cichlid fishes in Lake Tanganyika.Mol Biol Evol15: 391–407

    Article  CAS  PubMed  Google Scholar 

  35. Izsvak Z, Ivies Z, Garcia-Estefania D, Fahrenkrug S (1996) DANA elements: A family of composite, tRNA-derived short interspersed DNA elements associated with mutational activities in zerbrafish(Danio rerio). Proc Natl Acad Sci USA93: 1077–1081

    Article  CAS  PubMed  Google Scholar 

  36. Shimoda N, Chevrette M, Ekker M, Kikuchi Y, Hotta Y, Okamoto H (1996)Mermaida family of short interspersed repetitive elements, is useful for genome mapping.Biochem Biophys Res Commun 220: 226–232

    Article  CAS  PubMed  Google Scholar 

  37. Goodier J, Davidson W (1994) Tcl transposon-like sequences are widely distributed in salmonids.J Mol Biol241: 26–34

    Article  CAS  PubMed  Google Scholar 

  38. Radice A, Bugaj B, Fitch D, Emmons S (1994) Widespread occurrence of the Tcl transposon family: Tcl-like transposons from teleost fish.Mol Gen Genet244: 606–612

    Article  CAS  PubMed  Google Scholar 

  39. Ivies Z, Izsvak Z, Minter A, Hackett P (1996) Identification of functional domains and evolution of Tcl-like transposable elements.Proc Nall Acad Sci USA93: 5008–5013

    Article  Google Scholar 

  40. Rosenzweig B, Liao L, Hirsh D (1983) Sequence of theC. eleganstransposable element Tcl.Nucl Acid Res16: 4201–4209

    Article  Google Scholar 

  41. Hunt JA, Bishop IIIJG, Carson HL (1984) Chromosomal mapping of a middle-repetitive DNA sequence in a cluster of five species of HawaiianDrosophila. Proc Natl Acad Sci USA81: 7146–7150

    Article  CAS  Google Scholar 

  42. Brezinsky L, Wang G, Humphreys T, Hunt J (1990) The transposable element Uhu from HawaiianDrosophila —member of the widely dispersed class of Tcl-like transposons.Nucl Acid Res18: 2053–2059

    Article  CAS  Google Scholar 

  43. Avancini R, Walden K, Robertson H (1996) The genomes of most animals have multiple members of the Tcl family of transposable elements.Genetica98: 131–140

    Article  CAS  PubMed  Google Scholar 

  44. Baldwin L, Macgregor HC (1985) centromeric satellite DNA in the newtTriturus cristatus kareliniiand related species: its distribution and transcription on lampbrush chromosomes.Chromosoma92: 100–107

    Article  PubMed  Google Scholar 

  45. Barsacchi G (1991) Satellite DNA in the newts (Amphibia, Urodela). In: G Ghiara, F Angelini, E Olmo, L Varano (eds):Symp Evol Terr Vert.Mucchi Modena,171–198

    Google Scholar 

  46. Batistoni R, Pesole G, Marracci S, Nardi I (1995) A tandemly repeated DNA family originated from SINE-related elements in the European Plethodontid salamanders (Amphibia, Urodela).J Mol Evol40: 608–615

    Article  CAS  PubMed  Google Scholar 

  47. Vignali R, Nardi I (1996) Unusual features of the urodele genome: do they have a role in evolution and development?Int J Dev Biol40: 637–643

    CAS  PubMed  Google Scholar 

  48. Olmo E, Odierna G, Capriglione T, Cobror 0 (1985) Different trends in the variations of the main genomic components in turtles and scaly-reptiles.Comp Biochem Physiol80B: 441–446

    CAS  Google Scholar 

  49. Olmo E, Capriglione T, Odierna G (1989) genome size evolution in vertebrates: trends and constraints.Comp Biochem Physiol92B: 447–453

    Google Scholar 

  50. Singh L, Purdom IF, Jones KW (1980) Sex chromosome associated satellite DNA. Evolution and conservation.Chromosomes79: 137–157

    Article  CAS  Google Scholar 

  51. Erickson RP, Ross CE, Gorski Jl Stalvey JR, Drumm MM (1988) Bkm sequences from the human X chromosome contain large clusters of GATA/GACA repeats.Ann Hum Genet52: 167–176

    Article  CAS  PubMed  Google Scholar 

  52. Kent MG, Elliston KO, Shroeder W, Guise KS, Wachtel SS (1988) Conserved repetitive DNA sequences (Bkm) in normal equine males and sex-reversed females detected byin situhybridization.Cytogenet Cell Genet48: 99–102

    Article  CAS  PubMed  Google Scholar 

  53. Wachtel S, Demas S, Tiersch T, Pechan P, Shapiro D (1991) Bkm satellite DNA and ZFY in the coral reef fishAnthias squamipinnis. Genome34: 612–617

    Article  CAS  Google Scholar 

  54. Rajyashri KR, Singh L (1995) A Bkm-associated human Y-chromosomal DNA is conserved and transcribed in the testis of mouse.Chromosoma104: 274–281

    Article  CAS  PubMed  Google Scholar 

  55. Demas S, Wachtel S (1991) DNA fingerprinting in reptiles: Bkm hybridization patterns in Crocodilia and Chelonia.Genome34: 472–476

    Article  CAS  PubMed  Google Scholar 

  56. Aggarwal RK, Majumdar KC, Langh JW, Singh L (1994) Generic affinities among crocodilians as revealed by DNA fingerprint with a Bkm-derived probe.Proc Natl Acad Sci USA91: 10601–10605

    Article  CAS  PubMed  Google Scholar 

  57. Porter AC (1994) Organization and chromosomal location of repetitive DNA sequences in three species of squamates reptiles.Chromosome Res2: 263–273

    Article  CAS  PubMed  Google Scholar 

  58. Grechko VV, Fedorova LV, Fedorov AN, Slobodyanyuk SY, Ryabinin DM, Melnikova MN, Bannikova AA, Lomov AA, Sheremet’éva VA, Gorshkov VA et al (1997) Restriction endonuclease analysis of highly repetitive DNA as a phylogenetic tool.J Mol Evol45: 332–334

    Article  CAS  PubMed  Google Scholar 

  59. Fedorov AN, Fedorova LV, Grechko VV, Ryabinin DM, Shermet’eva VA, Bannikova AA, Lomov AA, Ryskov AP, Darevsky IS (1999) Variable and invariable DNA repeat characters revealed by taxon print approach are useful for molecular systematics.J Mol Evol48: 69–76

    Article  CAS  PubMed  Google Scholar 

  60. Flavell M, Jackson V, Iqbal MP, Riach I, Waddell S (1995) Ty-copia group retrotransposon sequences in Amphia and Reptilia.Mol Gen Genet246: 65–71

    Article  CAS  PubMed  Google Scholar 

  61. Endoh H, Nagahashi S, Okada N (1990) A highly repetitive and transcribable sequence in the tortoise genome is probably a retroposon.Eur J Biochem189 (1): 25–31

    Article  CAS  PubMed  Google Scholar 

  62. Nobiusha I, Ogawa T, Deshimaru M, Chijiwa T, Nakashima Ki Chuman Y, Shimoigashi Y, Fukumaki Y, Hattori S, Ohno M (1998) Retrotransposable CR1-like elements in crotaline snake genomes.Toxicon36 (6): 915–20

    Article  Google Scholar 

  63. Capriglione T, Olmo E, Odierna G, Smith DI, Miller OJ (1988) Genome composition and tandemly repetitive sequences at some centromeres in the lizardP. siculaRaf.Genetica79: 85–91

    Article  Google Scholar 

  64. Capriglione T, Cardone A, Olmo E, Odierna G (1991) Evolution of a centromeric satellite and phylogeny of lacertid lizards.Comp Biochem Physiol100B: 641–645

    CAS  Google Scholar 

  65. Capriglione T, Cardone A, Olmo E, Odiema G (1994) Further data on the occurence and evolution of satellite DNA families in the lacertid genome.Chromosome Res2: 327–330

    Article  CAS  PubMed  Google Scholar 

  66. Capriglione T, De Santo MG, Olmo E, Odiema G (1998) An alphoid—like satellite DNA sequence is present in the genome of a lacertid lizard.J Mol Evol46: 240–244

    Article  CAS  PubMed  Google Scholar 

  67. Clark L, Carbon I (1985) the structure and function of yeast centromeres.Annu Rev Genet19: 29–56

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Capriglione, T. (2000). Repetitive DNA as a tool to study the phylogeny of cold-blooded vertebrates. In: Olmo, E., Redi, C.A. (eds) Chromosomes Today. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8484-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8484-6_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9587-3

  • Online ISBN: 978-3-0348-8484-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics