Skip to main content

Meiosis in budding yeast and in multicellular eukaryotes — similarities and differences

  • Chapter
Chromosomes Today

Abstract

For many decades, the investigation of meiotic structures and processes has been almost exclusively a domain of cytology. Meiosis was studied preferably in organisms with large chromosomes and/or easily and abundantly available meiocytes, with favourite systems being monocotyledon pollen mother cells and locust and mammalian spermatocytes. During the last few years, however, we have witnessed the rapidly increasing role of molecular biology, and together with it, the rise of the budding yeast, Saccharomyces cerevisiae, as the now best-studied meiotic system. Yeast offers the advantage of elaborate genetics and inducible and highly synchronous meioses, which have allowed a wealth of studies on structural and regulatory genes involved in meiosis. Its initially poor amenability to cytological investigation, owing to the smallness and low degree of condensation of its chromosomes, has been overcome by the development of techniques for electron microscopical analysis of synaptonemal complexes (SCs), and the application of fluorescence in situ hybridization (FISH), immunostaining, and green fluorescent protein (GFP)-tagging of nuclear components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armstrong SJ, Kirkham AJ, Hultén MA (1994) XY chromosome behaviour in the germ-line of the human male: a FISH analysis of spatial orientation, chromatin condensation and pairing. Chromosome Res 2: 445–452

    Article  CAS  PubMed  Google Scholar 

  2. Dawe RK, Sedat JW, Agard DA, Cande WZ (1994) Meiotic chromosome pairing in maize is associated with a novel chromatin organization. Cell 76: 901–912

    Article  CAS  PubMed  Google Scholar 

  3. Scherthan H, Weich S, Schwegler H, Härle M, Heyting C, Cremer T (1996) Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol 134: 1109–1125

    Article  CAS  PubMed  Google Scholar 

  4. Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ (1997) Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137: 5–18

    Article  CAS  PubMed  Google Scholar 

  5. Loidl J (1990) The initiation of meiotic chromosome pairing: the cytological view. Genome 33: 759–778

    Article  CAS  PubMed  Google Scholar 

  6. Hiraoka Y, Dernburg AF, Parmelee SJ, Rykowski MC, Agard DA, Sedat JW (1993) The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis. J Cell Biol 120: 591–600

    Article  CAS  PubMed  Google Scholar 

  7. Scherthan H, Bähler J, Kohli J (1994) Dynamics of chromosome organization and pairing during meiotic prophase in fission yeast. J Cell Biol 127: 273–285

    Article  CAS  PubMed  Google Scholar 

  8. Loidl J, Klein F, Scherthan H (1994) Homologous pairing is reduced but not abolished in asynaptic mutants of yeast. J Cell Biol 125: 1191–1200

    Article  CAS  PubMed  Google Scholar 

  9. Weiner BM, Kleckner N (1994) Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77: 977–991

    Article  CAS  PubMed  Google Scholar 

  10. Keeney S, Kleckner N (1996) Communication between homologous chromosomes: genetic alterations at a nuclease-hypersensitive site can alter mitotic chromatin structure at that site both in cis and in trans. Genes Cells 1: 475–489

    Article  CAS  PubMed  Google Scholar 

  11. Jin Q-w Trelles-Sticken E, Scherthan H, Loidl J (1998) Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J Cell Biol 141: 21–29

    Article  Google Scholar 

  12. Scherthan H, Loidl J, Schuster T, Schweizer D (1992) Meiotic chromosome condensation and pairing in Saccharomyces cerevisiae studied by chromosome painting. Chromosoma 101: 590–595

    Article  CAS  PubMed  Google Scholar 

  13. Roeder GS (1997) Meiotic chromosomes: it takes two to tango. Gene Develop 11: 2600–2621

    Article  CAS  Google Scholar 

  14. Chua PR, Roeder GS (1998) Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93: 349–359

    Article  CAS  PubMed  Google Scholar 

  15. Aragón-Alcaide L, Reader S, Beven A, Shaw P, Miller T, Moore G (1997) Association of homologous chromosomes during floral development. Curr Biol 7: 905–908

    Article  PubMed  Google Scholar 

  16. Schwarzacher T (1997) Three stages of meiotic homologous chromosome pairing in wheat: cog- Meiosis in budding yeast and in multicellular eukaryotes—similarities and differences nition, alignment and synapsis. Sex Plant Reprod 10: 324–331

    Article  CAS  Google Scholar 

  17. Camerini-Otero RD, Hsieh P (1993) Parallel DNA triplexes, homologous recombination, and other homology-dependent DNA interactions. Cell 73: 217–223

    Article  CAS  PubMed  Google Scholar 

  18. Kleckner N, Weiner BM (1993) Potential advantages of unstable interactions for pairing of chromosomes in meiotic, somatic, and premeiotic cells. Cold Spring Harbor Symp Quant Biol 58: 553–565

    Article  CAS  PubMed  Google Scholar 

  19. Loidl J (1994) Cytological aspects of meiotic recombination. Experientia 50: 285–294

    Article  CAS  PubMed  Google Scholar 

  20. Oakley HA, Jones GH (1982) Meiosis in Mesostoma ehrenbergii ehrenbergii (Turbellaria, Rhabdocoela). I. Chromosome pairing, synaptonemal complexes and chiasma localisation in spermatogenesis. Chromosoma 85: 311–322

    Article  Google Scholar 

  21. Offenberg HH, Schalk JAC, Meuwissen RLJ, van Aalderen M, Kester HA, Dietrich AJJ, Heyting C (1998) SCP2: a major protein component of the axial elements of synaptonemal complexes of the rat. Nucl Acid Res 26: 2572–2579

    Article  CAS  Google Scholar 

  22. Tung K-S, Roeder GS (1998) Meiotic chromosome morphology and behavior in zipl mutants of Saccharomyces cerevisiae. Genetics 149: 817–832

    CAS  Google Scholar 

  23. Schmekel K, Meuwissen RLJ, Dietrich AJJ, Vink ACG, van Marie J, van Veen H, Heyting C (1996) Organization of SCPI protein molecules within synaptonemal complexes of the rat. Exp Cell Res 226: 20–30

    Article  CAS  PubMed  Google Scholar 

  24. Hawley RS, Arbel T (1993) Yeast genetics and the fall of the classical view of meiosis. Cell 72: 301–303

    Article  CAS  PubMed  Google Scholar 

  25. Bullard SA, Kim S, Galbraith AM, Malone RE (1996) Double strand breaks at the HIS2 recombination hot spot in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93: 13054–13059

    Article  CAS  Google Scholar 

  26. Rocco V, Nicolas A (1996) Sensing of DNA non-homology lowers the initiation of meiotic recombination in yeast. Genes Cells 1: 645–661

    Article  CAS  PubMed  Google Scholar 

  27. de Massy B, Baudat F, Nicolas A (1994) Initiation of recombination in Saccharomyces cerevisiae haploid meiosis. Proc Natl Acad Sci USA 91: 11929–11933

    Article  PubMed  Google Scholar 

  28. Gilbertson LA, Stahl FW (1994) Initiation of meiotic recombination is independent of interhomologue interactions. Proc Natl Acad Sci USA 91: 11934–11937

    Article  Google Scholar 

  29. Gasior SL, Wong AK, Kora Y, Shinohara A, Bishop DK (1998) Rad52 associates with RPA and functions with Rad55 and Rad57 to assemble meiotic recombination complexes. Gene Develop 12: 2208–2221

    Article  CAS  Google Scholar 

  30. Smith KN, Nicolas A (1998) Recombination at work for meiosis. Curr Opin Genet Develop 8: 200–211

    Article  CAS  Google Scholar 

  31. McKim KS, Hayashi-Hagihara A (1998) mei-W68 in Drosophila melanogaster encodes a Spo 11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Gene Develop 12: 2932–2942

    Article  CAS  Google Scholar 

  32. Dernburg AF, McDonald K, Moulder G, Barstead R, Villeneuve A (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94: 387–398

    Article  CAS  PubMed  Google Scholar 

  33. Klein S, Zenvirth D, Sherman A, Ried K, Rappold G, Simchen G (1996) Double-strand breaks on YACs during yeast meiosis may reflect meiotic recombination in the human genome. Nat Genet 13: 481–484

    Article  CAS  PubMed  Google Scholar 

  34. McKim KS, Green-Marroquin BL, Sekelsky JJ, Chin G, Steinberg C, Khodosh R, Hawley RS (1998) Meiotic synapsis in the absence of recombination. Science 279: 876–878

    Article  CAS  PubMed  Google Scholar 

  35. Anderson LK, Offenberg HH, Verkuijlen WMHC, Heyting C (1997) RecA-like proteins are components of early meiotic nodules in lily. Proc Natl Acad Sci USA 94: 6868–6873

    Article  CAS  PubMed  Google Scholar 

  36. Moens PB, Chen DJ, Shen ZY, Kolas N, Tarsounas M, Heng HHQ, Spyropoulos B (1997) Rad51 immunocytology in rat and mouse spermatocytes and oocytes. Chromosoma 106: 207–215

    Article  CAS  PubMed  Google Scholar 

  37. Plug AW, Peters AHFM, Keegan KS, Hoekstra MF, De Boer P, Ashley T (1998) Changes in protein composition of meiotic nodules during mammalian meiosis. J Cell Sci 111: 413–423

    CAS  PubMed  Google Scholar 

  38. Albini SM, Jones GH (1987) Synaptonemal complex spreading in Allium cepa and A. fistulosum. I. The initiation and sequence of pairing. Chromosome 95: 324–338

    Article  Google Scholar 

  39. Anderson LK, Stack SM (1988) Nodules associated with axial cores and synaptonemal complexes during zygotene in Psilotum nudum. Chromosoma 97: 96–100

    Article  Google Scholar 

  40. Moens PB, Heddle JAM, Spyropoulos B, Heng HHQ (1997) Identical megabase transgenes on mouse chromosomes 3 and 4 do not promote ectopic pairing or synapsis at meiosis. Genome 40: 770–773

    Article  CAS  PubMed  Google Scholar 

  41. Haber JE, Leung WY, Borts RH, Lichten M (1991) The frequency of meiotic recombination in yeast is independent of the number and position of homologous donor sequences: implications for chromosome pairing. Proc Natl Acad Sci USA 88: 1120–1124

    Article  CAS  PubMed  Google Scholar 

  42. Goldman ASH, Lichten M (1996) The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics 144: 43–55

    CAS  PubMed  Google Scholar 

  43. Louis EJ, Gorham HC, Timbrell AC (1998) Telomere recombination in meiosis: sequestering and non-random choice of partners. J Exp Bot 49 (Supplement): 82

    Google Scholar 

  44. Selva EM, New L, Crouse GF, Lahue RS (1995) Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics 139: 1175–1188

    CAS  Google Scholar 

  45. Datta A, Adjiri A, New L, Crouse GF, Jinks-Robertson S (1996) Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccharomyces cerevisiae. Mol Cell Biol 16: 1085–1093

    CAS  Google Scholar 

  46. Nevo-Caspi Y, Kupiec M (1994) Transcriptional induction of Ty recombination in yeast. Proc Nall Acad Sci USA 91: 12711–12715

    Article  CAS  Google Scholar 

  47. Fritze CE, Verschueren K, Strich R, Esposito RE (1997) Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J 16: 6495–6509

    Article  CAS  PubMed  Google Scholar 

  48. Nicolas A (1998) Relationship between transcription and initiation of meiotic recombination: toward chromatin accessibility. Proc Natl Acad Sci USA 95: 87–89

    Article  CAS  PubMed  Google Scholar 

  49. Loidl J, Nairz K (1997) Karyotype variability in yeast caused by nonallelic recombination in haploid meiosis. Genetics 146: 79–88

    CAS  PubMed  Google Scholar 

  50. Demburg AF, Sedat JW, Cande WZ, Bass HW (1995) Cytology of telomeres. In: EH Blackburn., CW Greider (eds): Telomeres. Cold Spring Harbor Monograph Series, CSH Laboratory Press, Cold Spring Harbor, 295–338

    Google Scholar 

  51. Trelles-Sticken E, Loidl J, Scherthan H (1999) Bouquet formation in budding yeast: initiation of recombination is not required for meiotic telomere clustering. J Cell Sci 112: 651–658

    CAS  PubMed  Google Scholar 

  52. Moore G (1998) To pair or not to pair: chromosome pairing and evolution. Curr Opin Plant Biol 1: 116–122

    Article  CAS  PubMed  Google Scholar 

  53. Chikashige Y, Ding D-Q, Imai Y, Yamamoto M, Haraguchi T, Hiraoka Y (1997) Meiotic nuclear reorganization: switching the position of centromeres and telomeres in the fission yeast Schizosaccharomyces pombe. EMBO J 16: 193–202

    Article  CAS  Google Scholar 

  54. Rees H, Durrant A (1986) Recombination and genome size. Theor Appl Genet 73: 72–76

    Article  Google Scholar 

  55. de Massy B, Nicolas A (1993) The control in cis of the position and the amount of the ARG4 meiotic double-strand break of Saccharomyces cerevisiae. EMBO J 12: 1459–1466

    Google Scholar 

  56. Wu T-C, Lichten M (1994) Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263: 515–517

    Article  CAS  PubMed  Google Scholar 

  57. Jones GH (1987) Chiasmata. In: PB Moens (ed.): Meiosis. Academic Press, Orlando, 213–244

    Google Scholar 

  58. Kaback DB, Guacci V, Barber D, Mahon JW (1992) Chromosome size-dependent control of meiotic recombination. Science 256: 228–232

    Article  CAS  PubMed  Google Scholar 

  59. Anderson LK, Stack SM, Fox MH, Zhang C (1985) The relationship between genome size and synaptonemal complex length in higher plants. Exp Cell Res 156: 367–378

    Article  CAS  PubMed  Google Scholar 

  60. Wallace BMN, Hultén MA (1985) Meiotic chromosome pairing in the normal human female. Ann Hum Genet 49: 215–226

    Article  CAS  PubMed  Google Scholar 

  61. Peterson DG, Stack SM, Healy JL, Donohoe BS, Anderson LK (1994) The relationship between synaptonemal complex length and genome size in four vertebrate classes (Osteicthyes, Reptilia, Aves, Mammalia). Chromosome Res 2: 153–162

    Article  CAS  PubMed  Google Scholar 

  62. Loidl J, Scherthan H, den Dunnen JT, Klein F (1995) Morphology of a human-derived YAC in yeast meiosis. Chromosoma 104: 183–188

    Article  CAS  PubMed  Google Scholar 

  63. Sears DD, Hegemann JH, Hieter P (1992) Meiotic recombination and segregation of human-derived artificial chromosomes in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89: 5296–5300

    Article  CAS  Google Scholar 

  64. Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowits I (1998) The transcriptional program of sporulation in budding yeast. Science 282: 699–705

    Article  CAS  PubMed  Google Scholar 

  65. Cawood AH, Jones JK (1980) Chromosome behaviour during meiotic prophase in the Solanaceae. Chromosoma 80: 57–68

    Article  Google Scholar 

  66. de Jong JH, Stam P (1985) The association of centromeres of nonhomologous chromosomes at meiotic prophase in Beta vulgaris L. Can J Genet Cytol 27: 165–171

    Google Scholar 

  67. Kleinig H, Sitte P (1986) Zellbiologie. 2. Aufl. G Fischer Verlag, Stuttgart, New York

    Google Scholar 

  68. Schmitz A, Chaput B, Fouchet P, Guilly MN, Frelat G, Vaiman M (1992) Swine chromosomal Meiosis in budding yeast and in multicellular eukaryotes—similarities and differences DNA quantification by bivariate flow karyotyping and karyotype interpretation. Cytometry 13: 703–710

    Article  CAS  PubMed  Google Scholar 

  69. Sherman JD, Stack SM (1992) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. V. Tomato (Lycopersicon esculentum) karyotype and idiogram. Genome 35: 354–359

    Article  Google Scholar 

  70. Schwarzacher G (1984) Untersuchungen zur Organisation der Synaptonemalen Komplexe in Oberflächen-gespreiteten Meiocyten einiger Angiospermen-und Säuger-Arten. PhD Thesis, University of Vienna

    Google Scholar 

  71. Villagómez DAF (1993) Zygotene-pachytene substaging and synaptonemal complex karyotyping of boar spermatocytes. Hereditas 118: 87–99

    Article  PubMed  Google Scholar 

  72. Morton NE (1991) Parameters of the human genome. Proc Nati Acad Sci USA 88: 7474–7476

    Article  CAS  Google Scholar 

  73. Hinegardner R, Rosen DE (1972) Cellular DNA content and the evolution of teleostean fishes. Amer Naturalist 106: 621–644

    Article  CAS  Google Scholar 

  74. Albini SM (1994) A karyotype of the Arabidopsis thaliana genome derived from synaptonemal complex analysis at prophase I of meiosis. Plant J 5: 665–672

    Article  Google Scholar 

  75. Holm PB, Rasmussen SW (1977) Human meiosis. I. The human pachytene karyotype analyzed by three-dimensional reconstruction of the synaptonemal complex. Carlsberg Res Commun 42: 283–323

    Article  Google Scholar 

  76. Solari AJ (1980) Synaptonemal complexes and associated structures in microspread human spermatocytes. Chromosoma 81: 315–337

    Article  CAS  PubMed  Google Scholar 

  77. Tanksley SD, Mutschler MA (1990) Linkage map of the tomato (Lycopersicon esculentum) (2N = 24). In: SJ O’Brien (ed.): Genetic maps: locus maps of complex genomes. Book 6, plants. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 6.3–6.15

    Google Scholar 

  78. Postlethwait JH, Johnson SL, Midson CN, Talbot WS, Gates M, Ballinger EW, Africa D, Andrews R, Carl T, Eisen JS et al (1994) A genetic linkage map for the zebrafish. Science 264: 699–703

    Article  CAS  PubMed  Google Scholar 

  79. Ellegren H, Chowdhary BP, Johannson M, Marklund L, Fredholm M, Gustaysson I, Andersson L (1994) A primary linkage map of the porcine genome reveals a low rate of genetic recombination. Genetics 137: 1089–1100

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Loidl, J. (2000). Meiosis in budding yeast and in multicellular eukaryotes — similarities and differences. In: Olmo, E., Redi, C.A. (eds) Chromosomes Today. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8484-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8484-6_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9587-3

  • Online ISBN: 978-3-0348-8484-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics