Skip to main content

CNS-delivery via conjugation to biological carriers: physiological-based approaches

  • Chapter
Peptide Transport and Delivery into the Central Nervous System

Part of the book series: Progress in Drug Research ((PDR,volume 61))

  • 466 Accesses

Abstract

The blood-brain barrier (BBB) is an insurmountable obstacle for a large number of bioactives including antiviral drugs, antineoplastic agents and central nervous system (CNS) active compounds like neuropeptides. Despite the formidable academic challenges of this problem, a great deal of research work has been conducted to explore possible role of molecular carrier complexes to improve transBBB transport of drugs. Recent advances in studies on BBB transport of xenobiotics vis-à-vis of nutrients and neuroactive agents have vividly transformed the classical concept of the BBB. This chapter critically covers physiologic based strategies, which employ pseudonutrients, cationic antibodies, chimeric peptides, recombinant protein(s) and peptides transport system for vectoring of impervious biomolecules across the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ab:

antibody

ADCC:

antibody dependent cellular cytotoxicity

APP:

amyloid precursor protein>

AUC:

area under curve

BBB:

blood-brain barrier

BDNF:

brain derived neurotrophic factor

CNS:

central nevous system

DTT:

dithiothreitol

HIV:

human immunodeficiency virus

mAb:

monoclonal antibody

NGF:

nerve growth factor

NHS:

N-hydroxy-succinimido

NMDA:

N-methyl-D-aspartate

PNA:

peptide nucleic acids

PEG:

polyethylene glycol

P-gp:

P-glycoprotein

RES:

reticuloendothelial system

Tf:

transferrin

TfR:

anti-transferrin receptor

TNF:

tumor necrosis factor

VIP:

vasoactive intestinal peptide

References

  1. Pardridge WM (1995) Transport of small molecules through the blood-brain barrier and methodology. Adv Drug Delivery Rev 15: 5–36

    Article  CAS  Google Scholar 

  2. Begley DJ (1996) The blood brain barrier: principles for targeting peptides and drugs to the central nervous system. J Pharm Pharmacol 48: 136–146

    Article  PubMed  CAS  Google Scholar 

  3. Vorbrodt AW (1987) Demonstration of anionic sites on the luminal and abluminal fronts of endothelial cells with poly-L-lysine-gold complex. J Histochem Cytochem 35: 1261–1266

    Article  PubMed  CAS  Google Scholar 

  4. Vorbrodt AW (1989) Ultracytochemical characterization of anionic sites in the wall of brain capillaries. J Neurocytol 18: 359–368

    Article  PubMed  CAS  Google Scholar 

  5. Pardridge WM, Buciak JL, Kang YS, Boado RJ (1993) Protamine-mediated transport of Suresh P. Vyas albumin into brain and other organs of the rat. Binding and endocytosis of protaminealbumin complex by microvascular endothelium. J Clin Invest 92: 2224–2229

    Article  PubMed  CAS  Google Scholar 

  6. Nagy Z, Peters H, Huttner I (1981) Endothelial surface charge: blood-brain barrier opening to horseradish peroxidase induced by polycation protamine sulfate. Acta Neuropathol (Suppl) 7: 7–9

    Article  CAS  Google Scholar 

  7. Griffin DF, Giffels J (1982) Study of protein characteristics that influence entry into the cerebrospinal fluid of normal mice and mice with encephalitis. J Clin Invest 70: 289–295

    Article  PubMed  CAS  Google Scholar 

  8. Boulianne GL, Hozumi N, Shulman MJ (1984) Production of functional chimeric mouse/human antibody. Nature 312: 643–646

    Article  PubMed  CAS  Google Scholar 

  9. Neuberger MS, Williams GT, Mitchell EB, Sousley SS, Flanigan JG, Rabbits TH (1985) A hapten specific chimeric IgE antibody with human physiological effector function. Nature 314: 268–270

    Article  PubMed  CAS  Google Scholar 

  10. Lo MS, Queen C (1991) Humanized antibodies for therapy. Nature 315: 501–502

    Google Scholar 

  11. Riechmann L, Clack M, Waldmann H, Winter G (1988) Reshaping human antibodies for therapy. Nature 332: 323–327

    Article  PubMed  CAS  Google Scholar 

  12. Bruggemann M, Williams GT, Bindon CI, Clack MR, Walker MR, Jefferies R, Waldmann H, Neuberger MS (1987) Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J Exp Med 166, 1351–1361

    Article  PubMed  CAS  Google Scholar 

  13. Steplewski Z, Sun LK, Shearman CW, Ghrayeb J, Daddona P, Koprowski H (1988) Biological activity of human mouse IgGl, IgG2, IgG3 and IgG4 chimeric monoclonal antibodies with antitumor specificity. Proc Natl Acad Sci USA 85: 4852–4856

    Article  PubMed  CAS  Google Scholar 

  14. Tramentano A, Janda KD, Benkovic C, Leiner RA (1986) Catalytic antibodies. Science 234: 1566–1570

    Article  Google Scholar 

  15. Pollock SJ, Jacobs JW, Schultz PG (1986) Selective chemical catalysis by an antibody. Science 234: 1570–1573

    Article  Google Scholar 

  16. Coloma MJ, Morrison SL (1993) Production and expression of genetically engineered immunoglobulins. Methods Mol Genet 2: 209–225

    CAS  Google Scholar 

  17. Kostelny SA, Cole MS, Tso JY (1992) Formation of a bispecific antibody by the use of leucine zippers. J Immunol 148: 1547–1553

    PubMed  CAS  Google Scholar 

  18. Hoogenboom HR, Volckert G, Raus JC (1991) Construction and expression of antibody tumor necrosis factor fusion proteins. Mol Immunol 28: 1027–1037

    Article  PubMed  CAS  Google Scholar 

  19. Butt AM, Jones HC, Abbott NJ (1989) Electrical resistance across the blood brain barrier in anaesthetized rats: A developmental study. J Physiol (Lond) 429: 47–62

    Google Scholar 

  20. Duffy KR, Pardridge WM (1989) Blood-brain barrier transcytosis of insulin in develop-ing rabbits. Brain Res 420: 32–38

    Article  Google Scholar 

  21. Fishman JB, Rubin JB, Handrahan JV, Connor JR, Fine RE (1987) Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J Neurosci 18: 299–304

    Article  CAS  Google Scholar 

  22. Pardridge WM (1986) Receptor mediated peptide transport through the blood-brain bar-rier. Endocrine Rev 7: 314–330

    Article  CAS  Google Scholar 

  23. Duffy KR, Pardridge WM, Rosenfeld RG (1986) Human blood-brain barrier insulin-like growth factor receptor. Metabolism 37: 136–140

    Article  Google Scholar 

  24. Bullard DE, Bourdon M, Bigner DD (1984) Comparison of various methods for delivering radiolabelled monoclonal antibody to normal rat brain. J Neurosurg 61: 901–911

    Article  PubMed  CAS  Google Scholar 

  25. Friden PM, Walus LR, Masso GF, Taylor MA, Malfroy B, Starzyk RM (1991) Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc Natl Acad Sci USA 88: 4771–4775

    Article  PubMed  CAS  Google Scholar 

  26. Friden PM, Walus LR, Watson P, Doctrow SR, Kozarich JW, Backman C, Bergman H, Hoffer B, Bloom F, Granholm AC (1993) Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science 259: 373–377

    Article  PubMed  CAS  Google Scholar 

  27. Muckerheide A, Apple RJ, Pesce AJ, Michael JG (1987) Cationization of protein antigens. Immunol 138: 833–837

    CAS  Google Scholar 

  28. Pardridge WM, Triguero D, Buciak JL, Yang J (1990) Evaluation of cationized rat albumin as a potential blood brain barrier drug transport vector. J Pharmacol Exp Ther 255: 893–899

    PubMed  CAS  Google Scholar 

  29. Gatewood JM, Schroth GP, Schmid CW, Bradbury EM (1990) Zinc-induced secondary structure transitions in human sperm protamines. JBiol Chem 265: 20667–20672

    PubMed  CAS  Google Scholar 

  30. Hardebo JE, Kahrstrom J (1985) Endothelial negative surface charge areas and blood brain barrier function. Acta Physiol Scand 125: 495–499

    Article  PubMed  CAS  Google Scholar 

  31. Westergren I, Johansson BB (1993) Altering the blood brain barrier in the rat by intracarotid infusion of polycations: a comparison between protamine, poly-L-lysine and polyL-arginine. Acta Physiol Scand 149: 99–104

    Article  PubMed  CAS  Google Scholar 

  32. Smith DH, Bym RA, Marsters SA, Gregory T, Groopman JE, Capon DJ (1987) Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science 238: 1704–1707

    Article  PubMed  CAS  Google Scholar 

  33. Hussey RE, Richardson NE, Kowalski M, Brown NR, Chang HC, Siliciano RF, Dorfman T, Walker B, Sodroski J, Reinherz EL (1988) A soluble CD4 protein selectively inhibits HIV replication and syncytium formation. Nature 331: 78–81

    Article  PubMed  CAS  Google Scholar 

  34. Pardridge WM (1991) Peptide drug delivery to the brain. Raven Press, New York, 1–357

    Google Scholar 

  35. Pardridge WM, Eisenberg J, Yang J (1987) Human blood-brain barrier transferrin receptor. Metabolism 36: 892–895

    Article  PubMed  CAS  Google Scholar 

  36. Fishman JB, Ruben JB, Handrahan JV, Connor JR, Fine RE (1987) Receptor mediated transcytosis across the blood-brain barrier. J Neurosci Res 18: 299–304

    Article  PubMed  CAS  Google Scholar 

  37. Skarlatos S, Yoshikawa T, Pardridge WM (1995) Transport of [125I] transferrin throughthe rat blood-brain barrier in vivo. Brain Res 683: 164–171

    Article  PubMed  CAS  Google Scholar 

  38. Friden PM, Walus LR, Musso GF, Taylor MA, Malfroy B, Starzyk RM (1991) Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc Natl Acad Sci USA 88: 4771–4775

    Article  PubMed  CAS  Google Scholar 

  39. Pardridge WM, Buciak JL, Friden PM (1991) Selective transport of anti-transferrin receptor antibody through the blood-brain barrier in vivo. J Pharmacol Exp Ther 259: 66–70

    PubMed  CAS  Google Scholar 

  40. Kang YS, Pardridge WM (1994) Use of neutral avidin improves pharmacokinetics and brain delivery of biotin bound to an avidin-monoclonal antibody conjugate. J Pharmacol Exp Ther 269: 344–350

    PubMed  CAS  Google Scholar 

  41. Kang YS, Pardridge WM (1994) Brain delivery of biotin bound to a conjugate of neutral avidin and cationized human albumin Pharm Res 11: 1257–1264

    Article  PubMed  CAS  Google Scholar 

  42. Shin SU, Friden P, Moran M, Olson T, Kang YS, Pardridge WM, Morison SL (1995) Transferrin-antibody fusion proteins are effective in brain targeting. Proc Natl Acad Sci USA 92: 2820–2824

    Article  PubMed  CAS  Google Scholar 

  43. Soos MA, O’Brien RM, Brindle NPJ, Stigter JM, Okamoto AK, Whittaker J, Siddle K (1989) Monoclonal antibodies to the insulin receptor mimic metabolic effects of insulin but do not stimulate receptor autophosphorylation in transfected NIH373 fibroblasts. Proc Natl Acad Sci USA 86: 5217–5221

    Article  PubMed  CAS  Google Scholar 

  44. Soos MA, Siddle K, Baron MD, Heward JM, Luzio JP, Bellatin J, Lennox ES (1986) Monoclonal antibodies reacting with multiple epitopes on the human insulin receptor. Biochem J 235: 199–208

    PubMed  CAS  Google Scholar 

  45. Pardridge WM, Kang YS, Buciak JL, Yang J (1995) Human insulin receptor monoclonal Suresh P. Vyas antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood brain barrier in vivo in the primates. Pharm Res 12: 807–816

    Article  PubMed  CAS  Google Scholar 

  46. Kumagai AK, Eisenberg J, Pardridge WM (1987) Absorptive-mediated endocytosis of cationized albumin and a b-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. J Biol Chem 262: 15214–15219

    PubMed  CAS  Google Scholar 

  47. Yoshikawa T, Pardridge WM (1992) Biotin delivery to brain with a covalent conjugate of avidin and a monoclonal antibody to the transferrin receptor. J Pharmacol Exp Ther 263: 897–903

    PubMed  CAS  Google Scholar 

  48. Green NM (1975) Avidin. Adv Protein Chem 29: 85–133

    Article  PubMed  CAS  Google Scholar 

  49. Green NM (1990) Avidin and streptavidin. Methods Enzymol 184: 51–67

    Article  PubMed  CAS  Google Scholar 

  50. Gitlin G, Bayer EA, Wilchek M (1990) Studies on the biotin-binding sites of avidin and streptavidin. Biochem J 269: 527–530

    PubMed  CAS  Google Scholar 

  51. Morrison SL, Shin SU (1995) Genetically engineered antibodies and their application to brain delivery. Adv Drug Deliv Rev 15: 147–175

    Article  CAS  Google Scholar 

  52. Yaksh TL, Wang JY, Go VLW, Harty GJ (1987) Cortical vasodilatation produced by vasoactive intestinal peptide (VIP) and by physiological stimuli in the cat. J Cereb Blood Flow Metab 7: 315–326

    Article  PubMed  CAS  Google Scholar 

  53. McCulloch J, Edvinsson L (1980) Cerebral circulatory and metabolic effects of vasoactive intestinal polypeptide. Am J Physiol 238: H449–H456

    PubMed  CAS  Google Scholar 

  54. Bickel U, Yoshikawa T, Landaw EM, Faull KF, Pardridge WM (1993) Pharmacologic effects in vivo in brain by vector mediated peptide drug delivery. Proc Natl Acad Sci USA 90: 2618–2622

    Article  PubMed  CAS  Google Scholar 

  55. Itakura T, Okuno T, Nakakita K, Kamei I, Naka Y, Nakai K, Imai H, Komai N, Kimura H, Maeda T (1984) A light and electron microscopic immunohistochemical study of vasoactive intestinal polypeptide and substance p-containing nerve fibers along the cerebral blood vessels comparison with aminergic and cholinergic nerve fibers. J Cerebral Blood Flow Metab 4: 407–414

    Article  CAS  Google Scholar 

  56. Lee TJF, Saito A (1984) Vasoactive intestinal polypeptide-like substance: the potential transmitter for cerebral vasodilation. Science 224: 898–901

    Article  PubMed  CAS  Google Scholar 

  57. Bickel U, Yamada S, Pardridge WM (1994) Synthesis and bioactivity of monobiotinylated DALDA: a u-specific opioid peptide designed for targeted brain delivery. J Pharmacol Exp Ther 268: 791–796

    PubMed  CAS  Google Scholar 

  58. Bickel U, Kang YS, Pardridge WM (1995) In vivo cleavage of a disulfide based chimeric opioid peptide in rat brain. Bioconj Chem 6: 211–218

    Article  CAS  Google Scholar 

  59. Pardridge WM, Kang YS, Buciak JL (1994) Transport of human recombinant brainderived neurotrophic factor (BDNF) through the rat blood-brain barrier in vivo using vector mediated peptide drug delivery. Pharm Res 11: 738–746

    Article  PubMed  CAS  Google Scholar 

  60. Wu D, Pardridge WM (1999) Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc Natl Acad Sci USA 96: 254–259

    Article  PubMed  CAS  Google Scholar 

  61. Gao WY, Han FS, Storm C, Egan W, Cheng YC (1992) Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase: implications for antisense technology. Mol Pharmacol 41: 223–229

    PubMed  CAS  Google Scholar 

  62. Whitesell L, Geselowitz D, Chavany C, Fahmy B, Walbridge S, Alger JR, Neckers LM (1993) Stability, clearance and disposition of intraventricularly administered oligodeoxy nucleotides: implications for therapeutic application within the central nervous system. Proc Natl Acad Sci USA 90: 4665–4669

    Article  PubMed  CAS  Google Scholar 

  63. Nielsen PE, Egholm M, Berg RH, Buchardt O (1993) Peptide nucleic acids (PNAs): potential antisense and anti-gene agents. Anti-cancer Drug Design 8: 53–63

    PubMed  CAS  Google Scholar 

  64. Kang YS, Boado RJ, Pardridge WM (1995) Pharmacokinetics and organ clearance of a 3’-biotinylated internally [32P] labeled phosphodiester oligodeoxynucleotide coupled to a neutral avidin/monoclonal antibody conjugate. Drug Metab Disp 23: 55–59

    CAS  Google Scholar 

  65. Pardridge WM, Boado RJ, Kang YS (1995) Vector mediated delivery of a peptide nucleic acid through the blood brain barrier in vivo. Proc Natl Acad Sci USA 92: 5592–5596

    Article  PubMed  CAS  Google Scholar 

  66. Hanvey JC, Peffer NJ, Bisi JE, Thomson SA, Cadilla R, Josey JA, Ricca DJ, Hassman CF, Bonham MA, Au KG et al (1992) Antisense and antigene properties of peptide nucleic acids. Science 258: 1481–1485

    Article  PubMed  CAS  Google Scholar 

  67. Frenkel D, Soloman B (2002) Filamentous phage as vector-mediated antibody delivery to the brain. Proc Nati Acad Sci USA 99: 5675–5679

    Article  CAS  Google Scholar 

  68. Wu D, Yang J, Pardridge WM (1997) Drug targeting of a peptide radiopharmaceutical through the primate blood-brain barrier in vivo with a monoclonal antibody to the human insulin receptor. J Clin Invest 100: 1804–1812

    Article  PubMed  CAS  Google Scholar 

  69. Kurihara N, Pardridge WM (1999) Imaging brain tumors by targeting peptide radiopharmaceuticals through the blood brain barrier. Cancer Res 59: 6159–6163

    PubMed  CAS  Google Scholar 

  70. Shi N, Boado RJ, Pardridge WM (2000) Antisense imaging of gene expression in the brain in vivo. Proc Nati Acad Sci USA 97: 14709–14714

    Article  CAS  Google Scholar 

  71. Shi N, Pardridge WM (2000) Noninvasive gene targeting to the brain. Proc Natl Acad Sci USA 97: 7567–7572

    Article  PubMed  CAS  Google Scholar 

  72. Gennuso R, Spigelman MK, Chinol M, Zappulla RA, Nieves J, Vallabhajosula S, Paciucci PA, Goldsmith SJ, Holland JF (1993) Effect of blood-brain barrier and blood tumor bar-rier modification on central nervous system liposomal uptake. Cancer Invest 11: 118–128

    Article  PubMed  CAS  Google Scholar 

  73. Micklus MJ, Greig NH, Tung J, Rapoport SI (1992) Organ distribution of liposomal for-mulations following intracarotid infusion in rats. Biochim Biophys Acta 1124: 7–12

    Article  PubMed  CAS  Google Scholar 

  74. Papanadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C et al (1991) Sterically stabilized liposomes: Improvement in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88: 11460–11464

    Article  Google Scholar 

  75. Li H, Sun H, Qian ZM (2002) The role of the transferrin-transferrin-receptor system in drug delivery and targeting. Trends in Pharm Sci 23: 206–209

    Article  CAS  Google Scholar 

  76. Shi N, Pardridge WM (2000) Non-invasive gene targeting to the brain. Proc Nati Acad Sci USA 93: 7567–7572

    Article  Google Scholar 

  77. Schroder U, Sabel BA (1996) Nanoparticles, a drug carrier system to pass the blood-brain barrier, permit central analgesic effects of i.v. dalargin injection. Brain Res 710: 121–124

    Article  PubMed  CAS  Google Scholar 

  78. Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA (1995) Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 674: 171–174

    Article  PubMed  CAS  Google Scholar 

  79. Schroider U, Sommerfeld P, Ulrich S, Sebel BA (1998) Nanoparticle technology for delivery of drugs across the blood-brain barrier. J Pharm Sci 87: 1305–1307

    Article  Google Scholar 

  80. Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J (1997) Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutyl cyanoacrylate nanoparticles. Pharm Res 14: 325–328

    Article  PubMed  CAS  Google Scholar 

  81. Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J (1999) Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16: 1564–1569

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Vyas, S.P. (2003). CNS-delivery via conjugation to biological carriers: physiological-based approaches. In: Prokai, L., Prokai-Tatrai, K. (eds) Peptide Transport and Delivery into the Central Nervous System. Progress in Drug Research, vol 61. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8049-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8049-7_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9420-3

  • Online ISBN: 978-3-0348-8049-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics