Skip to main content

Acetylcholine receptor/channel molecules of insects

  • Chapter
Comparative Molecular Neurobiology

Part of the book series: EXS ((EXS,volume 63))

Summary

Acetylcholine-gated ion channels of the nicotinic type are abundant in the nervous system of insects. The channels are permeable to Na+, K+ and probably Ca2+, and unlike most vertebrate neuronal nicotinic acetylcholine receptors the receptor/channel molecule is blocked by α-bungarotoxin (α-Bgt). Such α-Bgt-sensitive receptors are present at synapses and on cell bodies of insect neurones. Single channel recordings have shown the existence of multiple conductances of nAChRs. Studies on several different insect preparations have provided evidence for more than one open state and several closed states of insect nAChRs. Functional insect nAChR channels have now been investigated in situ, following reconstitution of a purified protein in bilayers, and as a result of expressing in Xenopus oocytes messenger RNA encoding receptor subunits.

Molecular cloning of putative nAChR α-subunits and non- α-subunits has been reported from the fruitfly Drosophila melanogaster and the locust Schistocerca gregaria. One of these, αLl, from the locust exhibits many of the pharmacological properties of in situ insect nAChRs when messenger RNA encoding this subunit is expressed in oocytes of Xenopus laevis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, C. R., Cull-Candy, S. G., and Miledi, R. (1977) Potential-dependent transition temperature of ionic channels induced by glutamate in locust muscle. Nature 268, 663–665.

    Article  Google Scholar 

  • Ballivet, M., Patrick, J., Lee, J., and Heinemann, S. (1982) Molecular cloning of cDNA coding for the gamma subunit of the Torpedo acetylcholine receptor. P.N.A.S. 79, 4466–4470.

    Article  Google Scholar 

  • Barnard, E. A., Marshall, J., Darlison, M. G., and Sattelle, D. B. (1989) Structural characteristics of cation and anion channels directly operated by agonists, in: Ion Transport, pp. 159–181. Eds D. J. Keeling and C. D. Benham. Academic Press, London.

    Google Scholar 

  • Beadle, C. A., Beadle, D. J., Pichon, Y., and Shimahara T. (1985) Patch clamp and noise analysis studies of cholinergic properties of cultured cockroach neurones. J. Physiol. 371, 145.

    Google Scholar 

  • Beadle D. J., Horseman, G., Pichon, Y., Amar, M., and Shimahara, T. (1989) Acetylcholine-activated ion channels in embryonic cockroach neurones growing in culture. J. exp. Biol. 142, 337–355.

    Google Scholar 

  • Bossy, B., Ballivet, M., and Spierer, P. (1988) Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EM BO J. 7, 611–618.

    Google Scholar 

  • Boulter, J., Connolly, J., Deneris, E., Goldmann, D., Heinemann, S., and Patrick, J. (1987) Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. P.N.A.S. 84, 7763–7767.

    Article  Google Scholar 

  • Brisson, A., and Unwin, N. (1985) Quaternary structure of the acetylcholine receptor. Nature 315, 474–477.

    Article  Google Scholar 

  • Breer, H., and Benke, D. (1985) Synthesis of acetylcholine receptors in Xenopus oocytes induced by poly A-mRNA from locust nervous tissue. Naturwissenchaften 72, 213–214.

    Article  Google Scholar 

  • Breer, H., and Sattelle, D. B. (1987) Molecular properties and function of insect acetylcholine receptors. J. Insect Physiol. 33, 771–790.

    Article  Google Scholar 

  • Cheung, H., Clarke, B. S., and Beadle, D. J. (1991) Action of nitromethylene insecticides on cockroach (Periplaneta americana) cultured neurones. Neurotox. 91, 49–50.

    Google Scholar 

  • Chialiang, C, and Devonshire, A. L. (1982) Changes in membrane phospholipids, identified by Arrhenius plots of acetylcholinesterase and associated with pyrethroid resistance (kdr) in houseflies (Musca domestica). Pestic. Sci. 13, 156–160.

    Article  Google Scholar 

  • Claudio, T., Ballivet, M., Patrick, J., and Heinemann, S. (1983) Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor γ-subunit. P.N.A.S. 80, 1111–1115.

    Article  Google Scholar 

  • Claudio, T. (1990) Molecular genetics of acetylcholine receptor channels, in: Molecular Neurobiology, pp. 63–142. Eds. D. M. Glover and B. D. Hames. IRL series, London.

    Google Scholar 

  • Colquhoun, D., and Sakmann, B. (1985) Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J. Physiol. 369, 501–557.

    Google Scholar 

  • Couturier, S., Bertrand, D., Marter, J.-M., Hernandez, M.-C, Bertrand, S., Malar, N., Valera, S., Barkar, T., and Ballivet, M. (1990) A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-bungarotoxin. Neuron 5, 847–856.

    Article  Google Scholar 

  • David, J. A., and Sattelle, D. B. (1984) Action of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motoneurone of the cockroach (Periplaneta americana). J. exp. Biol. 108, 119–136.

    Google Scholar 

  • Gardner, P., Ogden, D. C., and Colquhoun, D. (1984) Conductances of single ion channels opened by nicotinic agonists are indistinguishable. Nature 309, 160–162.

    Article  Google Scholar 

  • Giraudet, J., Dennis, M., Heidmann, T., Chang, J., and Changeux, J.-P. (1986) Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the subunit is labelled by H3 chlorpromazine. P.N.A.S. 83, 2719–2723.

    Article  Google Scholar 

  • Gundelfinger, E. D. (1992) How complex is the nicotinic receptor system of insects? Trends Neurosci. 15, 206–211.

    Article  Google Scholar 

  • Hamilton, S., Pratt, D., and Eaton, D. (1985) Arrangement of the subunits of the nicotinic acetylcholine receptor of Torpedo californica as determined by a neurotoxin crosslinking. Biochemistry 24, 2210–2219.

    Article  Google Scholar 

  • Hanke, W., Andree, J., Strotmann, J., and Kahle, C. (1990) Functional renaturation of receptor polypeptides eluted from SDS polyacrylamide gels. Eur. Biophys. J. 18, 129–134.

    Article  Google Scholar 

  • Hanke, W., and Breer, H. (1986) Channel properties of an insect neuronal acetylcholine receptor protein reconstituted in planar lipid bilayers. Nature 321, 171–174.

    Article  Google Scholar 

  • Hanke, W., and Breer, H. (1987) Characterization of the channel properties of a neuronal acetylcholine receptor reconstituted into planar lipid bilayers. J. Gen. Physiol. 90, 855–879.

    Article  Google Scholar 

  • Harrison, J. B., Leech, C. A., Katz, J., and Sattelle, D. B. (1990) Embryonic and adult neurones of the housefly (Musca domestica) in culture. Tissue Cell 22, 337–347.

    Article  Google Scholar 

  • Hermans-Borgmeyer, I., Zoopf, D., Ryseck, R.-P., Hovemann, B., Betz, H., and Gundelfinger, E. D. (1986) Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila. EM BO J. 5, 1503–1508.

    Google Scholar 

  • Imoto, K., Methfessel, C., Sakmann, B., Mishina, M., Mori, Y., Konno, T., Fukuda, K., Kurasaki, M., Bujo, H., Fujita, Y., and Numa, S. (1986) Location of a I-subunit region determining ion transport through the acetylcholine receptor channel. Nature 324, 670–674.

    Article  Google Scholar 

  • Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K., and Numa, S. (1988) Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–648.

    Article  Google Scholar 

  • Kao, P. N., Dwork, A. J., Kaldany, R.-R. J., Silver, M. L., Wideman, J., Stein, S., and Karlin, A. (1984) Identification of the subunit half-cysteine specifically labelled by an affinity reagent for acetylcholine receptor binding site. J. Biol. Chem. 259, 11,662–11, 665.

    Google Scholar 

  • Kao, P., and Karlin, A. (1986) Disulfide crosslink between adjacent half-cystinyl residues as the acetylcholine binding site. Biophys. J. 49, 5a.

    Article  Google Scholar 

  • Karlin, A., and Bartels, E. (1966) Effects of blocking sulfhydryl groups and of reducing disulfide bonds on the acetylcholine-activated permeability system of the electroplax. Biochim. Biophys. Acta 126, 525–535.

    Article  Google Scholar 

  • Landau, E. M., and Ben-Haim, D. (1974) Acetylcholine noise: Analysis after chemical modification of receptor. Science 185, 944–946.

    Article  Google Scholar 

  • Leech, C. A., Bai, D., and Sattelle, D. B. (1992) A sulphydryl reducing agent, dithiothreitol, modifies agonist-nicotinic receptor interaction in an identified insect neurone. J. exp. Biol. 169, 267–270.

    Google Scholar 

  • Leech, C. A., Jewess, P., Marshall, J., and Sattelle, D. B. (1991) Nitromethylene actions on in situ and expressed insect nicotinic acetylcholine receptors. FEBS Lett. 290, 90–94.

    Article  Google Scholar 

  • Leech, C. A., and Sattelle, D. B. (1992) Multiple conductances of neuronal nicotinic acetylcholine receptors. Neuropharmacology 31, 501–507.

    Article  Google Scholar 

  • Lindstrom, J., Schopefer, R., and Whiting, P. (1987) Molecular studies of the neural nicotinic acetylcholine receptor family (rev). Mol. Neurobiol. 1, 281–337.

    Article  Google Scholar 

  • Marshall, J., Darlison, M. G., Lunt, G. G., and Barnard, E. A. (1988) Cloning of putative nicotinic acetylcholine receptor genes from locust. Biochem. Soc. Trans. 16, 463.

    Google Scholar 

  • Marshall, J., Buckingham, S. D. Shingai, R., Lunt, G. G., Goosey, M. W., Darlison, M. G., Sattelle, D. B., and Barnard, E. A. (1990) Sequence and functional expression of a single α-subunit of an insect nicotinic acetylcholine receptor. EM BO J. 9 (13) 4391–4398.

    Google Scholar 

  • Matsuda, H., Saigusa, A., and Irisawa, H. (1987) Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+, Nature 325, 156–159.

    Article  Google Scholar 

  • Mulle, C., Choquet, D., Korn, H., and Changeux, J.-P. (1992) Calcium influx through nicotinic receptor in rat central neurons: its relevance to cellular regulation. Neuron 8, 135–143.

    Article  Google Scholar 

  • Mulle, C., Léna, C., and Changeux, J.-P. (1992) Potentiation of nicotinic receptor response by external calcium in rat central neurons. Neuron 8, 937–945.

    Article  Google Scholar 

  • Nef, P., Oneyser, C., Alliod, C., Couturier, S., and Ballivet, M. (1988) Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EM BO J. 7, 595–601.

    Google Scholar 

  • Nelson, N., Anholt, R., Lindstrom, J., and Montal, M. (1980) Reconstruction of purified acetylcholine receptors with functional ion channels in planar lipid bilayers. P.N.A.S. 77, 3057–3061.

    Article  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., and Numa, S. (1982) Primary structure of a-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299, 793–797.

    Article  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotanis, S., Tadaski, H., Asai, M., Takashima, H., Inayama, S., Takashi, M., and Numa, S. (1983) Primary structures of β- and δ-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301, 251–255.

    Article  Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotanis, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., and Numa, S. (1983b) Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302, 528–532.

    Article  Google Scholar 

  • Nomoto, H., Takahashi, N., Nagaki, Y., Endo, S., Arata, Y., and Hayashi, K. (1986) Carbohydrate structures of acetylcholine receptor from Torpedo californica and distribution of oligosaccharides among the subunits. Eur. J. Biochem. 157, 233–242.

    Article  Google Scholar 

  • Raftery, M. A., Hunkapiller, M. W., Strader, C. D., and Hood, L. E. (1980) Acetylcholine receptor: complex of homologous subunits. Science 208, 454–457.

    Article  Google Scholar 

  • Sattelle, D. B. (1980) Acetylcholine receptors of insects. Adv. Insect Physiol. 15, 215–315.

    Article  Google Scholar 

  • Sattelle, D. B. (1986) Insect acetylcholine receptors — biochemical and physiological approaches, in: Neuropharmocology and Pesticide Action, pp. 445–497. Ed. M. G. Ford. Ellis Horwood Ltd.

    Google Scholar 

  • Sattelle, D. B., Buckingham, S. D., Wafford, K. A., Sherby, S. M., Bakry, N. M., Eldefrawi, A. T., and May, T. E. (1989) Actions of the insecticide 2(nitromethylene) te trahydro-l,3-thiazine on insect and vertebrate nicotinic acetylcholine receptors. Proc. R. Soc. Lond. B 237, 501–514.

    Article  Google Scholar 

  • Sattelle, D. B., Sun, Y. A., and Wu, C. F. (1986) Neuronal acetylcholine receptor: patch clamp recording of single channel properties from dissociated insect neurones. IRCS Med. Sci. 14, 65–66.

    Google Scholar 

  • Sawruk, E., Schloss, P., Betz, H., and Schmitt, B. (1990) Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated α-subunit. EM BO J. 9, 2671–2677.

    Google Scholar 

  • Schloss, P., Hermans-Borgmeyer, I., Betz, H., and Gundelfinger, E. D. (1988) Neuronal acetylcholine receptors in Drosophila: the ARD protein is a component of a high affinity α-bungarotoxin binding complex. EM BO J. 7, 2889–2894.

    Google Scholar 

  • Shapiro, R. A., Wakimoto, B. T., Subers, E. M., and Nathanson, N. M. (1989) Characterization and functional expression in mammalian cells of genomic and cDNA clones encloding a Drosophila muscarinic acetylcholine receptor. P.N.A.S. 86, 9039–9043.

    Article  Google Scholar 

  • Sombati, S., and Lingle, C. J. (1985) Properties of single acetylcholine (ACh) receptor channels on dissociated CNS neurons of locust and Drosophila. Biophys. J. 47, 258a.

    Google Scholar 

  • Tareilus, E., Hanke, W., and Breer, H. (1990) Comparative electrophysiological measurements of neuronal acetylcholine receptor channels from insects. J. Comp. Physiol. 167, 521–526.

    Article  Google Scholar 

  • Unwin, N. (1989) The structure of ion channels in membranes of excitable cells. Neuron 3, 665–676.

    Article  Google Scholar 

  • Unwin, N., Toyoshima, C., and Kubalke, E. (1988) Arrangement of the acetylcholine receptor subunits in the resting and desensitized stages, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes. J. Cell Biol. 107, 1123–1138.

    Article  Google Scholar 

  • Vernino, S., Amador, M., Luetje, C. W., Patrick, J., and Dani, J. A. (1992) Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8, 127–134.

    Article  Google Scholar 

  • Wada, E., Ballivet, M., Boulter, J., Connolly, J., Wada, E., Deneris, E. S., Swanson, L. W., Heinemann, S., and Patrick, J. (1988) Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science 240, 330–334.

    Article  Google Scholar 

  • Wadsworth, S. C., Rosenthal, L. S., Kammermeyer, K. L., Potter, M. B., and Nelson, D. J. (1988) Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system. Mol. Cell Biol. 8, 778–785.

    Google Scholar 

  • Whiting, P., and Lindstrom, J. (1987) Purification and characterization of a nicotinic acetylcholine receptor from rat brain. P.N.A.S. 84, 595–599.

    Article  Google Scholar 

  • Wise, D. S., Wall, J., and Karlin, A. (1981) Relative locations of the beta and delta chains of the acetylcholine receptor determined by electron microscopy of isolated receptor trimer. J. Biol. Chem. 256, 12,624–12, 627.

    Google Scholar 

  • Witzemann, V., Barg, B., Nishikawa, Y., Sakmann, B., and Numa, S. (1987) Differential regulation of muscle acetylcholine receptor γ- and ε-subunit mRNA. FEBS Lett. 223, 103–112.

    Article  Google Scholar 

  • Wu, C. F., Suzuki, N., and Poo, M. M. (1983) Dissociated neurons from normal and mutant Drosophila larval central nervous system in cell culture. J. Neurosci. 3, 1888–1899.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Leech, C.A., Sattelle, D.B. (1993). Acetylcholine receptor/channel molecules of insects. In: Pichon, Y. (eds) Comparative Molecular Neurobiology. EXS, vol 63. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7265-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7265-2_5

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7267-6

  • Online ISBN: 978-3-0348-7265-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics