Skip to main content

Abstract

Advances in molecular biology are giving unprecedented insights into potassium (K)-channel structure and function. In parallel, the development of channel modulators and their investigation using electrophysiological techniques has revealed much, but posed many questions. What is the importance of the recently-discovered channel β-subunits? What is the nature of the so-called ATP-sensitive K-channel and how do K-channel openers exert tissue-protective actions? Can the K-channels in lymphocytes be exploited therapeutically? The purpose of this chapter is to give the reader an insight into this dynamic pharmacological field and to provide a stimulus for further discussion and experimentation. Correspondence to: Gillian Edwards, address as above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rudy B. Diversity and ubiquity of K+ channels. Neurosci. 1988; 25: 729–749.

    Article  CAS  Google Scholar 

  2. Pongs O. Molecular biology of voltage-dependent potassium channels. Physiol. Rev. 1992; 72: S69–S88.

    PubMed  CAS  Google Scholar 

  3. Gutman GA, Chandy KG. Nomenclature of mammalian voltage-dependent potassium channel genes. Neurosci. 1993; 5: 101–106.

    CAS  Google Scholar 

  4. Jan LY, Jan YN. Tracing the roots of ion channels. Cell 1992; 69: 715–718.

    Article  PubMed  CAS  Google Scholar 

  5. Jan LY, Jan YN. Structural elements involved in specific K+ channel functions. Ann. Rev. Physiol. 1992; 54: 537–555.

    Article  CAS  Google Scholar 

  6. Pongs O. Structure-function studies of the pore of potassium channels. J. Membrane Biol. 1993; 136: 1–8.

    Article  CAS  Google Scholar 

  7. MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 1991; 350: 232–235.

    Article  PubMed  CAS  Google Scholar 

  8. Hoshi T, Zagotta WN, Aldrich RW. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 1991; 7: 547–556.

    Article  PubMed  CAS  Google Scholar 

  9. Rettig J, Heinemann S, Lorra C, Parcej DN, Dolly JO, Pongs O. Non-inactivating voltage-gated potassium channels are converted to A-type channels by association with a β-subunit. Nature 1994; 369: 289–294.

    Article  PubMed  CAS  Google Scholar 

  10. Grinstein S, Foskett JK. Ionic mechanisms of cell volume regulation in leukocytes. Ann. Rev. Physiol. 1990; 52: 599–614.

    Article  Google Scholar 

  11. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 1984; 307: 465–468.

    Article  PubMed  CAS  Google Scholar 

  12. Matteson DR, Deutsch C. K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature 1984; 307: 468–471.

    Article  PubMed  CAS  Google Scholar 

  13. Lewis RS, Cahalan MD. Subset-specific expression of potassium channels in developing murine T lymphocytes. Science 1988; 239: 771–775.

    Article  PubMed  CAS  Google Scholar 

  14. Deutsch C, Chen L-Q. Heterologous expression of specific K + channels in T lymphocytes: functional consequences for volume regulation. Proc. Natl. Acad. Sci. USA 1993; 90: 10036–10040.

    Article  PubMed  CAS  Google Scholar 

  15. Cahalan MD, Chandy KG, DeCoursey TE, Gupta S. A voltage-gated potassium channel in human T lymphocytes. J. Physiol. 1985; 358: 197–237.

    PubMed  CAS  Google Scholar 

  16. Grissmer S, Dethlets B, Wasmuth JJ, Goldin AL, Gutman GA, Cahalan MD et al. Expression and chromosomal localization of a lymphocyte K + channel gene. Proc. Natl. Acad. Sci. USA 1990; 87: 9411–9415.

    Article  PubMed  CAS  Google Scholar 

  17. Garcia-Calvo M, Leonard RJ, Novick J, Stevens SP, Schmalhofer W, Kaczorowski GJ et al. Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J. Biol. Chem. 1993; 268: 18866–18874.

    PubMed  CAS  Google Scholar 

  18. Leonard RJ, Garcia ML, Slaughter RS, Reuben JP. Selective blockers of voltage-gated K+ channels depolarize human T lymphocytes: mechanism of the antiproliferative effect of charybdotoxin. Proc. Natl. Acad. Sci. USA 1992; 89: 10094–10098.

    Article  PubMed  CAS  Google Scholar 

  19. Lin C, Boltz RC, Blake T, Nguyen M, Talento A, Fischer P et al. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. J. Exp. Med. 1993; 177: 637–646.

    Article  PubMed  CAS  Google Scholar 

  20. Freedman BD, Price MA, Deutsch CJ. Evidence for voltage modulation of IL-2 production in mitogen-stimulated human peripheral blood lymphocytes. J. Immunol. 1992; 149: 3784–3794.

    PubMed  CAS  Google Scholar 

  21. Edwards G, Weston AH. The pharmacology of ATP-sensitive potassium channels. Annu. Rev. Pharmacol. Toxicol. 1993; 33: 597–637.

    Article  PubMed  CAS  Google Scholar 

  22. Dunne MJ, Petersen OH. Intracellular ADP activates K+ channels that are inhibited by ATP in an insulin-secreting cell line. FEBS Lett. 1986; 208: 59–66.

    Article  PubMed  CAS  Google Scholar 

  23. Tung RT, Kurachi Y. On the mechanism of nucleotide diphosphate activation of the ATP-sensitive K+ channel in ventricular cell of guinea-pig. J. Physiol. 1991; 437: 239–256.

    PubMed  CAS  Google Scholar 

  24. Terzic A, Findlay I, Hosoya Y, Kurachi Y. Dualistic behaviour of ATP-sensitive K+ channels toward intracellular nucleoside diphosphates. Neuron 1994; 12: 1049–1058.

    Article  PubMed  CAS  Google Scholar 

  25. Shen WK, Tung RT, Machulda MM, Kurachi Y. Essential role of nucleotide diphosphates in nicorandil-mediated activation of cardiac ATP-sensitive K+-channel — a comparison with pinacidil and lemakalim. Circ. Res. 1991; 69: 1152–1158.

    PubMed  CAS  Google Scholar 

  26. Quast U, Bray KM, Andres H, Manley PW, Baumlin Y, Dosogne J. Binding of the K+ channel opener [H3] P1075 in rat isolated aorta — relationship to functional effects of openers and blockers. Mol. Pharmacol. 1993; 43: 474–481.

    PubMed  CAS  Google Scholar 

  27. Hoffman FJ, Lenfers JB, Niemers E, Pleiss U, Scriabine A, Janis RA. High affinity binding of a potassium channel agonist to intact rat insulinoma cells. Biochem. Biophys. Res. Acta. 1993; 190: 551–558.

    CAS  Google Scholar 

  28. Edwards G, Ibbotson T, Weston AH. Levcromakalim may induce a voltage-independent K-current in rat portal veins by modifying the gating properties of the delayed rectifier. Br. J. Pharmacol. 1993; 110: 1037–1048.

    PubMed  CAS  Google Scholar 

  29. Ashford MLJ, Bond CT, Blair TA, Adelman JP. Cloning and functional expression of a rat heart KATP channel. Nature 1994; 370: 456–459.

    Article  PubMed  CAS  Google Scholar 

  30. Arena JP, Kass RS. Enhancement of potassium-sensitive current in heart cells by pinacidil: Evidence for modulation of the ATP-sensitive potassium channel. Circ. Res. 1989; 65: 436–445.

    PubMed  CAS  Google Scholar 

  31. Kubo Y, Baldwin TJ, Jan YN, Jan LY. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 1993; 362: 127–133.

    Article  PubMed  CAS  Google Scholar 

  32. Tytgat J, Vereecke J, Carmeliet E. A possible structural link between voltage-gated and inward rectifier K+ channels. Biophys. J. 1994; 66: A425.

    Google Scholar 

  33. Parratt JR, Kane KA. KATP channels in ischemic preconditioning. Cardiovasc. Res. 1994; 28: 783–785.

    Article  PubMed  CAS  Google Scholar 

  34. Jennings RB, Murry CE, Reimer KA. Energy metabolism in preconditioned and control myocardium: effect of total ischemia. J. Mol. Cell Cardiol. 1991; 33: 1449–1458.

    Article  Google Scholar 

  35. Tomai F, Crea F, Gaspardone A, Versaci F, De Paulis R, de Peppo AP et al. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in man. Circulation 1994; 90: 700–705.

    PubMed  CAS  Google Scholar 

  36. Gross GJ, Auchampach JA. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circ. Res. 1992; 70: 223–233.

    PubMed  CAS  Google Scholar 

  37. Escande D, Cavero I. Potassium channel openers in the heart. In: Escande D, Standen N, editors. K+ channels in cardiovascular medicine. Paris: Springer-Verlag, 1993: 225–244.

    Google Scholar 

  38. McPherson CD, Pierce GN, Cole WC. Ischemic cardioprotection by ATP-sensitive K+ channels involves high energy phosphate preservation. Am. J. Physiol. 1993; 34: H1809–H1818.

    Google Scholar 

  39. Djellas Y, Mestre M, Cavero I. Aprikalim protection against ischemic injury occurs with an accelerated decrease in action potential duration but not in myocardial contractility. Circulation 1993; 88: 1–632.

    Google Scholar 

  40. Auchampach JA, Maruyama M, Cavero I, Gross GJ. Pharmacological evidence for a role of ATP-dependent potassium channels in myocardial stunning. Circulation 1992; 86: 311–319.

    PubMed  CAS  Google Scholar 

  41. Yao Z, Gross GJ. Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation 1994; 89: 1769–1775.

    PubMed  CAS  Google Scholar 

  42. Cavero I, Premmereur J. ATP-sensitive potassium channel openers are of potential benefit in ischemic heart disease. Cardiovasc. Res. 1994; 28: 32–33.

    Article  PubMed  CAS  Google Scholar 

  43. Taira N. Nicorandil as a hybrid between nitrates and potassium channel activators. Am. J. Cardiol. 1989; 63: 18J–24J.

    Article  PubMed  CAS  Google Scholar 

  44. Frampton J, Buckley MM, Fitton A. Nicorandil: a review of its pharmacology and therapeutic efficacy in angina pectoris. Drugs 1992; 44: 625–655.

    Article  PubMed  CAS  Google Scholar 

  45. Aizawa T, Ogasawara K, Nakamura F, Hirosaka A, Sakuma T, Nagashima K et al. Effect of nicorandil on coronary spasm. Am. J. Cardiol. 1989; 63: 75J–79J.

    Article  PubMed  CAS  Google Scholar 

  46. Lablanche J-M. Bauters C, Leroy F, Bertrand ME. Prevention of coronary spasm by nicorandil: comparison with nifedipine. J. Cardiovasc. Pharmacol. 1992; 20(Supplement 3): S82–S85.

    Article  PubMed  Google Scholar 

  47. Kishida H, Murao S. Effect of a new coronary vasodilator, nicorandil, on variant angina pectoris. Clin. Pharmacol. Ther. 1987; 42: 166–174.

    Article  PubMed  CAS  Google Scholar 

  48. Kinoshita M, Nisbikawa S, Sawamura M, Yamaguchi S, Mitsunami K, Itoh M et al. Comparative efficacy of high-dose versus low-dose nicorandil therapy for chronic stable angina pectoris. Am. J. Cardiol. 1986; 58: 733–738.

    Article  PubMed  CAS  Google Scholar 

  49. Thormann J, Schlepper M, Kramer W, Gottwik M, Kindler M. Effectiveness of nicorandil (SG-75), a new long-acting drug with nitroglycerin effects in patients with coronary artery disease: improved left ventricular function and regional wall motion and abolition of pacing-induced angina. J. Cardiovasc. Pharmacol. 1983; 5: 371–377.

    Article  PubMed  CAS  Google Scholar 

  50. Wagner G. Selected issues from an overview on nicorandil: tolerance, duration of action, and long-term efficacy. J. Cardiovasc. Pharmacol. 1992; 20(Supplement 3): S86–S92.

    Article  PubMed  Google Scholar 

  51. Friedel HA, Brogden RN. Pinacidil: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the treatment of hypertension. Drugs 1990; 39(6): 929–967.

    Article  PubMed  CAS  Google Scholar 

  52. Hamilton TC, Beerahee A, Moen JS, Price RK, Ramju JV, Clapham JC. Levcromakalim. Cardiovasc. Drugs Rev. 1993; 11: 199–222.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Edwards, G. et al. (1995). Aspects of Potassium Channel Modulation. In: Cuello, A.C., Collier, B. (eds) Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7218-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7218-8_13

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7220-1

  • Online ISBN: 978-3-0348-7218-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics