Skip to main content

Human T Cell Priming Assay: Depletion of Peripheral Blood Lymphocytes in CD25+ Cells Improves the In Vitro Detection of Weak Allergen-Specific T Cells

  • Chapter
  • First Online:
T Lymphocytes as Tools in Diagnostics and Immunotoxicology

Abstract

To develop an in vitro assay that recapitulates the key event of allergic contact dermatitis (ACD), that is the priming of effector T cells by hapten-presenting dendritic cells, and then allows for the sensitive detection of chemical allergens represents a major challenge. Classical human T cell priming assays (hTCPA) that have been developed in the past, using hapten-loaded monocyte-derived dendritic cells (MDDCs) as antigen-presenting cells and peripheral blood lymphocytes (PBLs) as responding cells, were not efficient to prime T cells to common allergens with moderate/weak sensitizing properties. Recent progress in the understanding of the effector and regulatory mechanisms of ACD have shown that T cell priming requires efficient uptake of allergens by immunogenic DCs and that it is controlled by several subsets of regulatory cells including CD25+ Tregs. We therefore analyzed various parameters involved in allergen-specific T cell activation in vitro and showed that priming of allergen-specific T cells is hampered by several subsets of immune cells comprising CD1aneg DCs, CD25+ T cells, and CD56+ regulatory cells.

CD4+CD25+FoxP3+ Tregs prevented the in vitro T cell priming to moderate/weak allergens, and depletion of human PBLs in CD25+ cells significantly increased specific T cell proliferation and IFN-γ secretion. CD56+ cells exerted an additional control of T cell priming since co-depletion of both CD56+ and CD25+ cells improved the magnitude of chemical-specific T cell activation. Finally, CD1alow MDDCs were able to inhibit T cell activation obtained by allergen-pulsed CD1ahigh MDDC. Moreover, we showed that uptake by DC of allergen-encapsulated nanoparticles significantly increased their activation status and their ability to prompt specific T cell activation. Hence, by combining the different strategies, i.e., depletion of CD25+ and CD56+ cells, use of CD1ahigh MDDC, and nanoparticle encapsulation of allergens, it was possible to induce T cell priming to most of the moderate/weak allergens, including lipophilic molecules highly insoluble in culture media. Therefore, the present optimized in vitro human T cell priming assay is a valuable method to detect the sensitizing properties of chemical allergens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACD:

Allergic contact dermatitis

DCs:

Dendritic cells

DMSO:

Dimethyl sulfoxide

DNCB:

2,4-Dinitrochlorobenzene

FITC:

Fluorescein isothiocyanate

HCA:

a-Hexylcinnamaldehyde

hTCPA:

human T cell priming assay

ISs:

Immunological synapses

mAb:

monoclonal antibody

MDDCs:

Monocyte-derived dendritic cells

MDLR:

Mixed dendritic cell lymphocyte reaction

PBLs:

Peripheral blood lymphocytes

PBMCs:

Peripheral blood mononuclear cells

SLS:

Sodium lauryl sulfate

TNBS:

2,4,6-Trinitrobenzene sulfonic acid

References

  • Akiba H, Kehren J, Ducluzeau MT et al (2002) Skin inflammation during contact hypersensitivity is mediated by early recruitment of CD8+ T cytotoxic 1 cells inducing keratinocyte apoptosis. J Immunol 168(6):3079–87

    PubMed  CAS  Google Scholar 

  • Bursch LS, Wang L, Igyarto B et al (2007) Identification of a novel population of Langerin+dendritic cells. J Exp Med 204(13):3147–56

    Article  PubMed  CAS  Google Scholar 

  • Cohen MH, Chretien PB, Felix EL et al (1974) Augmentation of lymphocyte reactivity in guinea pigs, mice, monkeys and humans sensitised to BCG, dinitrochlorobenzene or nitrogen mustard. Nature 249(458):656–8

    Article  PubMed  CAS  Google Scholar 

  • Dustin ML (2010) Insights into function of the immunological synapse from studies with supported planar bilayers. Curr Top Microbiol Immunol 340:1–24

    Article  PubMed  CAS  Google Scholar 

  • Feau S, Garcia Z, Arens R, Yagita H, Borst J, Schoenberger SP (2012) The CD4(+) T-cell help signal is transmitted from APC to CD8(+) T-cells via CD27-CD70 interactions. Nat Commun 3:948

    Article  PubMed  Google Scholar 

  • Gomez DE, Aguero M, Vocanson M, Hacini-Rachinel F et al (2012) Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8(+) T cells and activating Foxp3(+) regulatory T cells. J Clin Invest 122(5):1700–11

    Article  Google Scholar 

  • Gorbachev AV, Fairchild RL (2010) CD4+CD25+ regulatory T cells utilize FasL as a mechanism to restrict DC priming functions in cutaneous immune responses. Eur J Immunol 40(7):2006–15

    Article  PubMed  CAS  Google Scholar 

  • Goubier A, Vocanson M, Macari C et al (2013) Invariant NKT cells suppress CD8(+) T-cell-mediated allergic contact dermatitis independently of regulatory CD4(+) T cells. J Invest Dermatol 133(4):980–7

    Article  PubMed  CAS  Google Scholar 

  • Henrickson SE, Mempel TR, Mazo IB et al (2008) In vivo imaging of T cell priming. Sci Signal 1(12); pt2

    Google Scholar 

  • Honda T, Egawa G, Grabbe S, Kabashima K (2013) Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Invest Dermatol 133(2):303–15

    Article  PubMed  CAS  Google Scholar 

  • Iyori M, Zhang T, Pantel H, Gagne BA, Sentman CL (2010) TRAIL/DR5 plays a critical role in NK cell-mediated negative regulation of dendritic cell cross-priming of T cells. J Immunol 187(6):3087–95

    Article  Google Scholar 

  • Kaplan D, Igyarto BZ, Gaspari AA (2012) Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol 12(2):114–24

    PubMed  CAS  Google Scholar 

  • Kehren J, Desvignes C, Krasteva M et al (1999) Cytotoxicity is mandatory for CD8(+) T cell-mediated contact hypersensitivity. J Exp Med 189(5):779–86

    Article  PubMed  CAS  Google Scholar 

  • Krasteva M, Peguet-Navarro J, Moulon C, Courtellemont P, Redziniak G, Schmitt D (1996) In vitro primary sensitization of hapten-specific T cells by cultured human epidermal Langerhans cells–a screening predictive assay for contact sensitizers. Clin Exp Allergy 26(5):563–70

    Article  PubMed  CAS  Google Scholar 

  • Lass C, Vocanson M, Wagner S et al (2008) Anti-inflammatory and immune-regulatory mechanisms prevent contact hypersensitivity to Arnica montana L. Exp Dermatol 17(10):849–57

    Article  PubMed  CAS  Google Scholar 

  • Le Borgne M, Etchart N, Goubier A et al (2006) Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24(2):191–201

    Article  PubMed  Google Scholar 

  • Macleod AS, Havran WL (2011) Functions of skin-resident gamma delta T cells. Cell Mol Life Sci 68(14):2399–408

    Article  PubMed  CAS  Google Scholar 

  • Mahnke K, Ring S, Johnson TS et al (2007) Induction of immunosuppressive functions of dendritic cells in vivo by CD4+CD25+ regulatory T cells: role of B7-H3 expression and antigen presentation. Eur J Immunol 37(8):2117–26

    Article  PubMed  CAS  Google Scholar 

  • Martin S, Lappin MB, Kohler J et al (2000) Peptide immunization indicates that CD8+ T cells are the dominant effector cells in trinitrophenyl-specific contact hypersensitivity. J Invest Dermatol 115(2):260–6

    Article  PubMed  CAS  Google Scholar 

  • Martin S, Delattre V, Leicht C, Weltzien HU, Simon JC (2003) A high frequency of allergen-specific CD8+ Tc1 cells is associated with the murine immune response to the contact sensitizer trinitrophenyl. Exp Dermatol 12(1):78–85

    Article  PubMed  CAS  Google Scholar 

  • Martin SF, Dudda JC, Bachtanian E et al (2008) Toll-like receptor and IL-12 signaling control susceptibility to contact hypersensitivity. J Exp Med 205(9):2151–62

    Article  PubMed  CAS  Google Scholar 

  • Martin SF, Esser PR, Schmucker S (2010) T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cell Mol Life Sci 67(24):4171–84

    Article  PubMed  CAS  Google Scholar 

  • Martin SF, Esser PR, Weber FC et al (2011) Mechanisms of chemical-induced innate immunity in allergic contact dermatitis. Allergy 66(9):1152–63

    Article  PubMed  CAS  Google Scholar 

  • Mattarollo SR, Yong M, Gosmann C (2011) NKT cells inhibit antigen-specific effector CD8 T cell induction to skin viral proteins. J Immunol 187(4):1601–8

    Article  PubMed  CAS  Google Scholar 

  • Moed H, Von Blomberg M, Bruynzeel DP, Scheper R, Gibbs S, Rustemeyer T (2005) Improved detection of allergen-specific T-cell responses in allergic contact dermatitis through the addition of ‘cytokine cocktails’. Exp Dermatol 14(8):634–40

    Article  PubMed  CAS  Google Scholar 

  • Nakashima H, Hamaguchi Y, Watanabe R et al (2010) CD22 expression mediates the regulatory functions of peritoneal B-1a cells during the remission phase of contact hypersensitivity reactions. J Immunol 184(9):4637–45

    Article  PubMed  CAS  Google Scholar 

  • Ohkura N, Sakaguchi S (2010) Regulatory T cells: roles of T cell receptor for their development and function. Semin Immunopathol 32(2):95–106

    Article  PubMed  CAS  Google Scholar 

  • Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ (2007) CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8(12):1353–62

    Article  PubMed  CAS  Google Scholar 

  • Peiser M, Tralau T, Heidler J et al (2012) Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects: Current knowledge assembled at an international workshop at BfR, Germany. Cell Mol Life Sci 69:763–81

    Article  PubMed  CAS  Google Scholar 

  • Richter A, Schmucker SS, Esser PR et al (2013) Human T cell priming assay (hTCPA) for the identification of contact allergens based on naive T cells and DC—IFN-gamma and TNF-alpha readout. Toxicol In Vitro 27:1180–5

    Article  PubMed  CAS  Google Scholar 

  • Ring S, Schafer SC, Mahnke K, Lehr HA, Enk AH (2006) CD4+ CD25+ regulatory T cells suppress contact hypersensitivity reactions by blocking influx of effector T cells into inflamed tissue. Eur J Immunol 36(11):2981–92

    Article  PubMed  CAS  Google Scholar 

  • Ring S, Karakhanova S, Johnson T, Enk AH, Mahnke K (2010) Gap junctions between regulatory T cells and dendritic cells prevent sensitization of CD8(+) T cells. J Allergy Clin Immunol 125(1):237–46, e231–237

    Article  PubMed  CAS  Google Scholar 

  • Rougier N, Redziniak G, Mougin D, Schmitt D, Vincent C (2000) In vitro evaluation of the sensitization potential of weak contact allergens using langerhans-like dendritic cells and autologous T cells. Toxicology 145(1):73–82

    Article  PubMed  CAS  Google Scholar 

  • Rozieres A, Vocanson M, Rodet K et al (2010) CD8+ T cells mediate skin allergy to amoxicillin in a mouse model. Allergy 65(8):996–1003

    Article  PubMed  CAS  Google Scholar 

  • Rustemeyer T, De Ligter S, Von Blomberg BM, Frosch PJ, Scheper RJ (1999) Human T lymphocyte priming in vitro by haptenated autologous dendritic cells. Clin Exp Immunol 117(2):209–16

    Article  PubMed  CAS  Google Scholar 

  • Schildknecht A, Brauer S, Brenner C et al (2010) FoxP3+ regulatory T cells essentially contribute to peripheral CD8+ T-cell tolerance induced by steady-state dendritic cells. Proc Natl Acad Sci U S A 107(1):199–203

    Article  PubMed  CAS  Google Scholar 

  • Semmling V, Lukacs-Kornek V, Thaiss CA et al (2010) Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat Immunol 11(4):313–20

    Article  PubMed  CAS  Google Scholar 

  • Shevach EM (2011) Biological functions of regulatory T cells. Adv Immunol 112:137–76

    Article  PubMed  Google Scholar 

  • Soderquest K, Walzer T, Zafirova B et al (2011) Cutting edge: CD8+ T cell priming in the absence of NK cells leads to enhanced memory responses. J Immunol 186(6):3304–8

    Article  PubMed  CAS  Google Scholar 

  • Speiser DE, Baumgaertner P, Voelter V et al (2008) Unmodified self antigen triggers human CD8 T cells with stronger tumor reactivity than altered antigen. Proc Natl Acad Sci U S A 105(10):3849–54

    Article  PubMed  CAS  Google Scholar 

  • Tang Q, Bluestone JA (2008) The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9(3):239–44

    Article  PubMed  CAS  Google Scholar 

  • Tang Q, Krummel MF (2006) Imaging the function of regulatory T cells in vivo. Curr Opin Immunol 18(4):496–502

    Article  PubMed  CAS  Google Scholar 

  • Vocanson M, Goujon C, Chabeau G et al (2006a) The skin allergenic properties of chemicals may depend on contaminants–evidence from studies on coumarin. Int Arch Allergy Immunol 140(3):231–8

    Article  PubMed  CAS  Google Scholar 

  • Vocanson M, Hennino A, Cluzel-Tailhardat M et al (2006b) CD8+ T cells are effector cells of contact dermatitis to common skin allergens in mice. J Invest Dermatol 126(4):815–20

    Article  PubMed  CAS  Google Scholar 

  • Vocanson M, Cluzel-Tailhardat M, Poyet G et al (2008) Depletion of human peripheral blood lymphocytes in CD25+ cells allows for the sensitive in vitro screening of contact allergens. J Invest Dermatol 128:2119–22

    Article  PubMed  CAS  Google Scholar 

  • Vocanson M, Hennino A, Rozieres A, Poyet G, Nicolas JF (2009) Effector and regulatory mechanisms in allergic contact dermatitis. Allergy 64(12):1699–714

    Article  PubMed  CAS  Google Scholar 

  • Vocanson M, Rozieres A, Hennino A et al (2010) Inducible costimulator (ICOS) is a marker for highly suppressive antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells. J Allergy Clin Immunol 126(2):280–9, 289 e281–287

    Article  PubMed  CAS  Google Scholar 

  • Wing JB, Sakaguchi S (2012) Multiple treg suppressive modules and their adaptability. Front Immunol 3:178

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Wing JB, Sakaguchi S (2011) Two modes of immune suppression by Foxp3(+) regulatory T cells under inflammatory or non-inflammatory conditions. Semin Immunol 23(6):424–30

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Vocanson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Vocanson, M. et al. (2014). Human T Cell Priming Assay: Depletion of Peripheral Blood Lymphocytes in CD25+ Cells Improves the In Vitro Detection of Weak Allergen-Specific T Cells. In: Martin, S. (eds) T Lymphocytes as Tools in Diagnostics and Immunotoxicology. Experientia Supplementum, vol 104. Springer, Basel. https://doi.org/10.1007/978-3-0348-0726-5_7

Download citation

Publish with us

Policies and ethics