Skip to main content

Advertisement

Log in

Regulatory T cells: roles of T cell receptor for their development and function

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Naturally arising CD4+CD25+ regulatory T cells (Treg cells), which specifically express the forkhead family transcription factor Foxp3, are essential for the maintenance of immunological self-tolerance and immune homeostasis. Stimulation of the T cell antigen receptor (TCR) via recognizing self-peptide/major histocompatibility complex (MHC) is required for their expression of Foxp3 in the course of their development in the thymus. The TCR repertoires displayed by Treg cells and naïve T cells are apparently distinct, suggesting that Treg cells with high reactivity to self-peptide/MHC ligands are somehow driven to Treg cell lineage in the thymus. Treg cells also require stimulation via TCR to exert suppression in the periphery. At the molecular level, assembly of Foxp3, Foxp3-interacting factors, and chromatin-remodeling factors is in part under the control of TCR signaling, and TCR stimulation alters Foxp3-dependent transcriptional regulation, protein–protein interaction, and Foxp3 recruitment to the specific genomic loci. These findings collectively indicate that the TCR signaling is essential for suppressive function of Treg cells and that TCR has a determinant role for driving developing T cells to the Foxp3+CD4+CD25+ Treg cell lineage and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sakaguchi S, Wing K, Miyara M (2007) Regulatory T cells-a brief history and perspective. Eur J Immunol 37(Suppl 1):S116–S123

    Article  CAS  PubMed  Google Scholar 

  2. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061

    Article  CAS  PubMed  Google Scholar 

  3. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol 4(4):330–336

    Article  CAS  PubMed  Google Scholar 

  4. Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4 + CD25+ T regulatory cells. Nat Immunol 4(4):337–342

    Article  CAS  PubMed  Google Scholar 

  5. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27(1):68–73

    Article  CAS  PubMed  Google Scholar 

  6. Ochs HD, Ziegler SF, Torgerson TR (2005) FOXP3 acts as a rheostat of the immune response. Immunol Rev 203:156–164

    Article  CAS  PubMed  Google Scholar 

  7. Ziegler SF (2006) FOXP3: of mice and men. Annu Rev Immunol 24:209–226

    Article  CAS  PubMed  Google Scholar 

  8. Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30(5):636–645

    Article  CAS  PubMed  Google Scholar 

  9. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T (2009) Regulatory T cells: how do they suppress immune responses? Int Immunol 21(10):1105–1111

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, Shimizu J, Sakaguchi S (1998) Immunologic self-tolerance maintained by CD25 + CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10(12):1969–1980

    Article  CAS  PubMed  Google Scholar 

  11. Thornton AM, Shevach EM (1998) CD4 + CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188(2):287–296

    Article  CAS  PubMed  Google Scholar 

  12. Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ (2005) Cutting edge: contact-mediated suppression by CD4 + CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol 174(4):1783–1786

    CAS  PubMed  Google Scholar 

  13. Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, Ley TJ (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27(4):635–646

    Article  CAS  PubMed  Google Scholar 

  14. Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, Heib V, Becker M, Kubach J, Schmitt S, Stoll S, Schild H, Staege MS, Stassen M, Jonuleit H, Schmitt E (2007) Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med 204(6):1303–1310

    Article  CAS  PubMed  Google Scholar 

  15. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ (2007) CD4 + CD25 + Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol 8(12):1353–1362

    Article  CAS  PubMed  Google Scholar 

  16. Oderup C, Cederbom L, Makowska A, Cilio CM, Ivars F (2006) Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology 118(2):240–249

    Article  CAS  PubMed  Google Scholar 

  17. Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P, Belladonna ML, Bianchi R, Fioretti MC, Puccetti P (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3(11):1097–1101

    Article  CAS  PubMed  Google Scholar 

  18. Zhao DM, Thornton AM, DiPaolo RJ, Shevach EM (2006) Activated CD4 + CD25+ T cells selectively kill B lymphocytes. Blood 107(10):3925–3932

    Article  CAS  PubMed  Google Scholar 

  19. Tang Q, Bluestone JA (2008) The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9(3):239–244

    Article  CAS  PubMed  Google Scholar 

  20. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–532

    Article  CAS  PubMed  Google Scholar 

  21. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190(7):995–1004

    Article  CAS  PubMed  Google Scholar 

  22. Read S, Malmstrom V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192(2):295–302

    Article  CAS  PubMed  Google Scholar 

  23. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS, Vignali DA (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450(7169):566–569

    Article  CAS  PubMed  Google Scholar 

  24. Sakaguchi S, Wing K, Yamaguchi T (2009) Dynamics of peripheral tolerance and immune regulation mediated by Treg. Eur J Immunol 39(9):2331–2336

    Article  CAS  PubMed  Google Scholar 

  25. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322(5899):271–275

    Article  CAS  PubMed  Google Scholar 

  26. Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F, Sakaguchi S (1999) Thymus and autoimmunity: production of CD25 + CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162(9):5317–5326

    CAS  PubMed  Google Scholar 

  27. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192(2):303–310

    Article  CAS  PubMed  Google Scholar 

  28. Yamaguchi T, Hirota K, Nagahama K, Ohkawa K, Takahashi T, Nomura T, Sakaguchi S (2007) Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity 27(1):145–159

    Article  CAS  PubMed  Google Scholar 

  29. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S (2008) Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A 105(29):10113–10118

    Article  CAS  PubMed  Google Scholar 

  30. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164

    CAS  PubMed  Google Scholar 

  31. Setoguchi R, Hori S, Takahashi T, Sakaguchi S (2005) Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 201(5):723–735

    Article  CAS  PubMed  Google Scholar 

  32. Malek TR, Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4(9):665–674

    Article  CAS  PubMed  Google Scholar 

  33. Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW (2007) CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol 119(2):482–487

    Article  CAS  PubMed  Google Scholar 

  34. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6(11):1142–1151

    Article  CAS  PubMed  Google Scholar 

  35. Vang KB, Yang J, Mahmud SA, Burchill MA, Vegoe AL, Farrar MA (2008) IL-2, -7, and -15, but not thymic stromal lymphopoeitin, redundantly govern CD4 + Foxp3+ regulatory T cell development. J Immunol 181(5):3285–3290

    CAS  PubMed  Google Scholar 

  36. Shevach EM, DiPaolo RA, Andersson J, Zhao DM, Stephens GL, Thornton AM (2006) The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev 212:60–73

    Article  CAS  PubMed  Google Scholar 

  37. Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30(5):626–635

    Article  CAS  PubMed  Google Scholar 

  38. Stockinger B, Veldhoen M (2007) Differentiation and function of Th17 T cells. Curr Opin Immunol 19(3):281–286

    Article  CAS  PubMed  Google Scholar 

  39. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24(2):179–189

    Article  CAS  PubMed  Google Scholar 

  40. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238

    Article  CAS  PubMed  Google Scholar 

  41. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, Blank RB, Meylan F, Siegel R, Hennighausen L, Shevach EM, O’Shea JJ (2007) Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26(3):371–381

    Article  CAS  PubMed  Google Scholar 

  42. Koonpaew S, Shen S, Flowers L, Zhang W (2006) LAT-mediated signaling in CD4 + CD25+ regulatory T cell development. J Exp Med 203(1):119–129

    Article  CAS  PubMed  Google Scholar 

  43. Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, Naji A, Caton AJ (2001) Thymic selection of CD4 + CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2(4):301–306

    Article  CAS  PubMed  Google Scholar 

  44. Kawahata K, Misaki Y, Yamauchi M, Tsunekawa S, Setoguchi K, Miyazaki J, Yamamoto K (2002) Generation of CD4(+)CD25(+) regulatory T cells from autoreactive T cells simultaneously with their negative selection in the thymus and from nonautoreactive T cells by endogenous TCR expression. J Immunol 168(9):4399–4405

    CAS  PubMed  Google Scholar 

  45. Kim JK, Klinger M, Benjamin J, Xiao Y, Erle DJ, Littman DR, Killeen N (2009) Impact of the TCR signal on regulatory T cell homeostasis, function, and trafficking. PLoS ONE 4(8):e6580

    Article  PubMed  CAS  Google Scholar 

  46. Tai X, Cowan M, Feigenbaum L, Singer A (2005) CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6(2):152–162

    Article  CAS  PubMed  Google Scholar 

  47. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4 + CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12(4):431–440

    Article  CAS  PubMed  Google Scholar 

  48. Lenschow DJ, Herold KC, Rhee L, Patel B, Koons A, Qin HY, Fuchs E, Singh B, Thompson CB, Bluestone JA (1996) CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity 5(3):285–293

    Article  CAS  PubMed  Google Scholar 

  49. Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, Masteller EL, McDevitt H, Bonyhadi M, Bluestone JA (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199(11):1455–1465

    Article  CAS  PubMed  Google Scholar 

  50. Akiyama T, Maeda S, Yamane S, Ogino K, Kasai M, Kajiura F, Matsumoto M, Inoue J (2005) Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308(5719):248–251

    Article  CAS  PubMed  Google Scholar 

  51. Kajiura F, Sun S, Nomura T, Izumi K, Ueno T, Bando Y, Kuroda N, Han H, Li Y, Matsushima A, Takahama Y, Sakaguchi S, Mitani T, Matsumoto M (2004) NF-kappa B-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J Immunol 172(4):2067–2075

    CAS  PubMed  Google Scholar 

  52. Mathis D, Benoist C (2007) A decade of AIRE. Nat Rev Immunol 7(8):645–650

    Article  CAS  PubMed  Google Scholar 

  53. Hori S, Haury M, Coutinho A, Demengeot J (2002) Specificity requirements for selection and effector functions of CD25 + 4+ regulatory T cells in anti-myelin basic protein T cell receptor transgenic mice. Proc Natl Acad Sci U S A 99(12):8213–8218

    Article  CAS  PubMed  Google Scholar 

  54. Hsieh CS, Zheng Y, Liang Y, Fontenot JD, Rudensky AY (2006) An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol 7(4):401–410

    Article  CAS  PubMed  Google Scholar 

  55. Pacholczyk R, Kern J, Singh N, Iwashima M, Kraj P, Ignatowicz L (2007) Nonself-antigens are the cognate specificities of Foxp3+ regulatory T cells. Immunity 27(3):493–504

    Article  CAS  PubMed  Google Scholar 

  56. Kuczma M, Pawlikowska I, Kopij M, Podolsky R, Rempala GA, Kraj P (2009) TCR repertoire and Foxp3 expression define functionally distinct subsets of CD4+ regulatory T cells. J Immunol 183(5):3118–3129

    Article  CAS  PubMed  Google Scholar 

  57. Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY (2004) Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21(2):267–277

    Article  CAS  PubMed  Google Scholar 

  58. Andersson J, Stefanova I, Stephens GL, Shevach EM (2007) CD4 + CD25+ regulatory T cells are activated in vivo by recognition of self. Int Immunol 19(4):557–566

    Article  CAS  PubMed  Google Scholar 

  59. Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, Rudensky AY (2007) Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445(7129):771–775

    Article  CAS  PubMed  Google Scholar 

  60. Lahl K, Mayer CT, Bopp T, Huehn J, Loddenkemper C, Eberl G, Wirnsberger G, Dornmair K, Geffers R, Schmitt E, Buer J, Sparwasser T (2009) Nonfunctional regulatory T cells and defective control of Th2 cytokine production in natural scurfy mutant mice. J Immunol 183(9):5662–5672

    Article  CAS  PubMed  Google Scholar 

  61. Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, Sakaguchi S (2006) Foxp3-dependent and -independent molecules specific for CD25 + CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int Immunol 18(8):1197–1209

    Article  CAS  PubMed  Google Scholar 

  62. Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R, Mathis D, Benoist C (2007) Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27(5):786–800

    Article  CAS  PubMed  Google Scholar 

  63. Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M (2008) Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol 9(2):194–202

    Article  CAS  PubMed  Google Scholar 

  64. Kim HP, Leonard WJ (2007) CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med 204(7):1543–1551

    CAS  PubMed  Google Scholar 

  65. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, Cheroutre H (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317(5835):256–260

    Article  CAS  PubMed  Google Scholar 

  66. Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204(8):1775–1785

    Article  CAS  PubMed  Google Scholar 

  67. Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ (2007) All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J Exp Med 204(8):1765–1774

    Article  CAS  PubMed  Google Scholar 

  68. Siddiqui KR, Powrie F (2008) CD103+ GALT DCs promote Foxp3+ regulatory T cells. Mucosal Immunol 1(Suppl 1):S34–S38

    Article  CAS  PubMed  Google Scholar 

  69. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445(7130):936–940

    Article  CAS  PubMed  Google Scholar 

  70. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445(7130):931–935

    Article  CAS  PubMed  Google Scholar 

  71. Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ (2009) The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10(6):595–602

    Article  CAS  PubMed  Google Scholar 

  72. Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM, Chu TT, Corcoran L, Treuting P, Klein U, Rudensky AY (2009) Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458(7236):351–356

    Article  CAS  PubMed  Google Scholar 

  73. Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, Rudensky AY (2009) CD4+ regulatory T cells control TH17 responses in a stat3-dependent manner. Science 326:986–991

    Article  CAS  PubMed  Google Scholar 

  74. Li B, Greene MI (2007) FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell Cycle 6(12):1432–1436

    CAS  PubMed  Google Scholar 

  75. Bettelli E, Dastrange M, Oukka M (2005) Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci U S A 102(14):5138–5143

    Article  CAS  PubMed  Google Scholar 

  76. Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, Miyachi Y, Tsukada T, Sakaguchi S (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446(7136):685–689

    Article  CAS  PubMed  Google Scholar 

  77. Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K, Nakaya M, Takaesu G, Hori S, Yoshimura A, Kobayashi T (2008) Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J Biol Chem 283(25):17003–17008

    Article  CAS  PubMed  Google Scholar 

  78. Pan F, Yu H, Dang EV, Barbi J, Pan X, Grosso JF, Jinasena D, Sharma SM, McCadden EM, Getnet D, Drake CG, Liu JO, Ostrowski MC, Pardoll DM (2009) Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325(5944):1142–1146

    Article  CAS  PubMed  Google Scholar 

  79. Chen C, Rowell EA, Thomas RM, Hancock WW, Wells AD (2006) Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J Biol Chem 281(48):36828–36834

    Article  CAS  PubMed  Google Scholar 

  80. Aramburu J, Heitman J, Crabtree GR (2004) Calcineurin: a central controller of signalling in eukaryotes. EMBO Rep 5(4):343–348

    Article  CAS  PubMed  Google Scholar 

  81. Aramburu J, Garcia-Cozar F, Raghavan A, Okamura H, Rao A, Hogan PG (1998) Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol Cell 1(5):627–637

    Article  CAS  PubMed  Google Scholar 

  82. Okamura H, Aramburu J, Garcia-Rodriguez C, Viola JP, Raghavan A, Tahiliani M, Zhang X, Qin J, Hogan PG, Rao A (2000) Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Mol Cell 6(3):539–550

    Article  CAS  PubMed  Google Scholar 

  83. Rao A, Luo C, Hogan PG (1997) Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15:707–747

    Article  CAS  PubMed  Google Scholar 

  84. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han A, Ziegler SF, Mathis D, Benoist C, Chen L, Rao A (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126(2):375–387

    Article  CAS  PubMed  Google Scholar 

  85. Ranger AM, Oukka M, Rengarajan J, Glimcher LH (1998) Inhibitory function of two NFAT family members in lymphoid homeostasis and Th2 development. Immunity 9(5):627–635

    Article  CAS  PubMed  Google Scholar 

  86. Ito Y (2008) RUNX genes in development and cancer: regulation of viral gene expression and the discovery of RUNX family genes. Adv Cancer Res 99:33–76

    Article  CAS  PubMed  Google Scholar 

  87. Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, Komori T, Ito Y, Littman DR (2002) Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111(5):621–633

    Article  CAS  PubMed  Google Scholar 

  88. Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ, Lee KY, Nomura S, Lee CW, Han SB, Kim HM, Kim WJ, Yamamoto H, Yamashita N, Yano T, Ikeda T, Itohara S, Inazawa J, Abe T, Hagiwara A, Yamagishi H, Ooe A, Kaneda A, Sugimura T, Ushijima T, Bae SC, Ito Y (2002) Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109(1):113–124

    Article  CAS  PubMed  Google Scholar 

  89. Kitoh A, Ono M, Naoe Y, Ohkura N, Yamaguchi T, Yaguchi H, Kitabayashi I, Tsukada T, Nomura T, Miyachi Y, Taniuchi I, Sakaguchi S (2009) Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity 31(4):609–620

    Article  CAS  PubMed  Google Scholar 

  90. Sasaki K, Yagi H, Bronson RT, Tominaga K, Matsunashi T, Deguchi K, Tani Y, Kishimoto T, Komori T (1996) Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci U S A 93(22):12359–12363

    Article  CAS  PubMed  Google Scholar 

  91. Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X, Bushweller JH, Bories JC, Alt FW, Ryan G, Liu PP, Wynshaw-Boris A, Binder M, Marin-Padilla M, Sharpe AH, Speck NA (1996) The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87(4):697–708

    Article  CAS  PubMed  Google Scholar 

  92. Rudra D, Egawa T, Chong MM, Treuting P, Littman DR, Rudensky AY (2009) Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nat Immunol 10(11):1170–1177

    Article  CAS  PubMed  Google Scholar 

  93. Bruno L, Mazzarella L, Hoogenkamp M, Hertweck A, Cobb BS, Sauer S, Hadjur S, Leleu M, Naoe Y, Telfer JC, Bonifer C, Taniuchi I, Fisher AG, Merkenschlager M (2009) Runx proteins regulate Foxp3 expression. J Exp Med 206(11):2329–2337

    Article  CAS  PubMed  Google Scholar 

  94. Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    Article  CAS  PubMed  Google Scholar 

  95. Brenner O, Levanon D, Negreanu V, Golubkov O, Fainaru O, Woolf E, Groner Y (2004) Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc Natl Acad Sci U S A 101(45):16016–16021

    Article  CAS  PubMed  Google Scholar 

  96. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V, Brookes AJ, Tentler D, Kristjansdottir H, Grondal G, Bolstad AI, Svenungsson E, Lundberg I, Sturfelt G, Jonssen A, Truedsson L, Lima G, Alcocer-Varela J, Jonsson R, Gyllensten UB, Harley JB, Alarcon-Segovia D, Steinsson K, Alarcon-Riquelme ME (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32(4):666–669

    Article  CAS  PubMed  Google Scholar 

  97. Helms C, Cao L, Krueger JG, Wijsman EM, Chamian F, Gordon D, Heffernan M, Daw JA, Robarge J, Ott J, Kwok PY, Menter A, Bowcock AM (2003) A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nat Genet 35(4):349–356

    Article  CAS  PubMed  Google Scholar 

  98. Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, Suzuki M, Nagasaki M, Ohtsuki M, Ono M, Furukawa H, Nagashima M, Yoshino S, Mabuchi A, Sekine A, Saito S, Takahashi A, Tsunoda T, Nakamura Y, Yamamoto K (2003) An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat Genet 35(4):341–348

    Article  CAS  PubMed  Google Scholar 

  99. Kikly K, Liu L, Na S, Sedgwick JD (2006) The IL-23/Th(17) axis: therapeutic targets for autoimmune inflammation. Curr Opin Immunol 18(6):670–675

    Article  CAS  PubMed  Google Scholar 

  100. Aujla SJ, Dubin PJ, Kolls JK (2007) Th17 cells and mucosal host defense. Semin Immunol 19(6):377–382

    Article  CAS  PubMed  Google Scholar 

  101. Kottke T, Sanchez-Perez L, Diaz RM, Thompson J, Chong H, Harrington K, Calderwood SK, Pulido J, Georgopoulos N, Selby P, Melcher A, Vile R (2007) Induction of hsp70-mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer. Cancer Res 67(24):11970–11979

    Article  CAS  PubMed  Google Scholar 

  102. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441(7090):231–234

    Article  CAS  PubMed  Google Scholar 

  103. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4 + CD25- naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198(12):1875–1886

    Article  CAS  PubMed  Google Scholar 

  104. Shi Y, Sawada J, Sui G, el Affar B, Whetstine JR, Lan F, Ogawa H, Luke MP, Nakatani Y (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422(6933):735–738

    Article  CAS  PubMed  Google Scholar 

  105. Fisson S, Darrasse-Jeze G, Litvinova E, Septier F, Klatzmann D, Liblau R, Salomon BL (2003) Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J Exp Med 198(5):737–746

    Article  CAS  PubMed  Google Scholar 

  106. Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E, Klein-Hessling S, Serfling E, Hamann A, Huehn J (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5(2):e38

    Article  PubMed  CAS  Google Scholar 

  107. Sanchez-Abarca LI, Gutierrez-Cosio S, Santamaria C, Caballero-Velazquez T, Blanco B, Herrero-Sanchez C, Garcia JL, Carrancio S, Hernandez-Campo P, Gonzalez FJ, Flores T, Ciudad L, Ballestar E, Del Canizo C, San Miguel JF, Perez-Simon JA (2009) Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting. Blood 115:107–121

    Article  PubMed  CAS  Google Scholar 

  108. Josefowicz SZ, Wilson CB, Rudensky AY (2009) Cutting edge: TCR stimulation is sufficient for induction of Foxp3 expression in the absence of DNA methyltransferase 1. J Immunol 182(11):6648–6652

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors have no conflicting financial interests. We thank Atsushi Tanaka for critically reading the manuscript. This work was supported by grants-in-aids from the Ministry of Education, Sports, and Culture and the Ministry of Human Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimon Sakaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohkura, N., Sakaguchi, S. Regulatory T cells: roles of T cell receptor for their development and function. Semin Immunopathol 32, 95–106 (2010). https://doi.org/10.1007/s00281-010-0200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-010-0200-5

Keywords

Navigation