Skip to main content

Mechanisms and Significance of Bacterial Resistance to Human Cationic Antimicrobial Peptides

  • Chapter
  • First Online:
Antimicrobial Peptides and Innate Immunity

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Cationic antimicrobial peptides (CAMPs) are essential compounds of the innate immunity system possessed by humans. CAMPs protect the host by exerting bactericidal activity, molecular signaling, modulating the immune response, and facilitating the communication between innate and acquired immunity. Over the millennia, bacteria have developed mechanisms to circumvent the antimicrobial activity of CAMPs, thereby promoting their survival during infection. In this chapter, we focus on the mechanisms used by various bacterial pathogens to resist the antibiotic-like action of CAMPs and the consequences of such resistance.

Maira Goytia and Justin L. Kandler contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P (2002) Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Akesson P, Sjoholm AG, Bjorck L (1996) Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J Biol Chem 271(2):1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Amer LS, Bishop BM, van Hoek ML (2010) Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochem Biophys Res Commun 396(2):246–251. doi:S0006-291X(10)00742-4[pii]10.1016/j.bbrc.2010.04.073

    Article  PubMed  CAS  Google Scholar 

  • Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44(7):1818–1824

    Article  PubMed  CAS  Google Scholar 

  • Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, Klevit RE, Le Moual H, Miller SI (2005) Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122(3):461–472. doi:S0092-8674(05)00553-2[pii]10.1016/j.cell.2005.05.030

    Article  PubMed  CAS  Google Scholar 

  • Banemann A, Deppisch H, Gross R (1998) The lipopolysaccharide of Bordetella bronchiseptica acts as a protective shield against antimicrobial peptides. Infect Immun 66(12):5607–5612

    PubMed  CAS  Google Scholar 

  • Bauer ME, Spinola SM (2000) Localization of Haemophilus ducreyi at the pustular stage of disease in the human model of infection. Infect Immun 68(4):2309–2314

    Article  PubMed  CAS  Google Scholar 

  • Bauer ME, Townsend CA, Ronald AR, Spinola SM (2006) Localization of Haemophilus ducreyi in naturally acquired chancroidal ulcers. Microbes Infect 8(9–10):2465–2468. doi:S1286-4579(06)00230-9[pii]10.1016/j.micinf.2006.06.001

    Article  PubMed  CAS  Google Scholar 

  • Bayer AS, Prasad R, Chandra J, Koul A, Smriti M, Varma A, Skurray RA, Firth N, Brown MH, Koo SP, Yeaman MR (2000) In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect Immun 68(6):3548–3553

    Article  PubMed  CAS  Google Scholar 

  • Bayer AS, Kupferwasser LI, Brown MH, Skurray RA, Grkovic S, Jones T, Mukhopadhay K, Yeaman MR (2006) Low-level resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein 1 in vitro associated with qacA gene carriage is independent of multidrug efflux pump activity. Antimicrob Agents Chemother 50(7):2448–2454. doi:50/7/2448[pii]10.1128/AAC.00028-06

    Article  PubMed  CAS  Google Scholar 

  • Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M, Hornsey M, Dhanji H, Chart H, Bou G, Livermore DM, Woodford N (2011) Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother 55(7):3370–3379. doi:AAC.00079-11[pii]10.1128/AAC.00079-11

    Article  PubMed  CAS  Google Scholar 

  • Becker MN, Diamond G, Verghese MW, Randell SH (2000) CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem 275(38):29731–29736. doi:10.1074/jbc.M000184200M000184200[pii]

    Article  PubMed  CAS  Google Scholar 

  • Belas R, Manos J, Suvanasuthi R (2004) Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides. Infect Immun 72(9):5159–5167. doi:10.1128/IAI.72.9.5159-5167.2004

    Article  PubMed  CAS  Google Scholar 

  • Bengoechea JA, Skurnik M (2000) Temperature-regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Mol Microbiol 37(1):67–80. doi:mmi1956[pii]

    Article  PubMed  CAS  Google Scholar 

  • Bergman P, Johansson L, Asp V, Plant L, Gudmundsson GH, Jonsson AB, Agerberth B (2005) Neisseria gonorrhoeae downregulates expression of the human antimicrobial peptide LL-37. Cell Microbiol 7(7):1009–1017. doi:CMI530[pii]10.1111/j.1462-5822.2005.00530.x

    Article  PubMed  CAS  Google Scholar 

  • Bernard R, Guiseppi A, Chippaux M, Foglino M, Denizot F (2007) Resistance to bacitracin in Bacillus subtilis: unexpected requirement of the BceAB ABC transporter in the control of expression of its own structural genes. J Bacteriol 189(23):8636–8642. doi:JB.01132-07[pii]10.1128/JB.01132-07

    Article  PubMed  CAS  Google Scholar 

  • Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M (1990) All-D-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 274(1–2):151–155

    Article  PubMed  CAS  Google Scholar 

  • Braff MH, Jones AL, Skerrett SJ, Rubens CE (2007) Staphylococcus aureus exploits cathelicidin antimicrobial peptides produced during early pneumonia to promote staphylokinase-dependent fibrinolysis. J Infect Dis 195(9):1365–1372. doi:JID37442[pii]10.1086/513277

    Article  PubMed  CAS  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. doi:10.1038/nrmicro1098[pii] nrmicro1098

    Article  PubMed  CAS  Google Scholar 

  • Brown KL, Hancock RE (2006) Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18(1):24–30. doi:S0952-7915(05)00199-8[pii]10.1016/j.coi.2005.11.004

    Article  PubMed  CAS  Google Scholar 

  • Burlak C, Hammer CH, Robinson MA, Whitney AR, McGavin MJ, Kreiswirth BN, Deleo FR (2007) Global analysis of community-associated methicillin-resistant Staphylococcus aureus exoproteins reveals molecules produced in vitro and during infection. Cell Microbiol 9(5):1172–1190. doi:10.1111/j.1462-5822.2006.00858.x

    Article  PubMed  CAS  Google Scholar 

  • Campos MA, Vargas MA, Regueiro V, Llompart CM, Alberti S, Bengoechea JA (2004) Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72(12):7107–7114. doi:72/12/7107[pii]10.1128/IAI.72.12.7107-7114.2004

    Article  PubMed  CAS  Google Scholar 

  • Casey SG, Shafer WM, Spitznagel JK (1985) Anaerobiosis increases resistance of Neisseria gonorrhoeae to O2-independent antimicrobial proteins from human polymorphonuclear granulocytes. Infect Immun 47(2):401–407

    PubMed  CAS  Google Scholar 

  • Collins LV, Kristian SA, Weidenmaier C, Faigle M, Van Kessel KP, Van Strijp JA, Gotz F, Neumeister B, Peschel A (2002) Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J Infect Dis 186(2):214–219. doi:JID010926[pii]10.1086/341454

    Article  PubMed  CAS  Google Scholar 

  • Cox AD, Wright JC, Li J, Hood DW, Moxon ER, Richards JC (2003) Phosphorylation of the lipid A region of meningococcal lipopolysaccharide: identification of a family of transferases that add phosphoethanolamine to lipopolysaccharide. J Bacteriol 185(11):3270–3277

    Article  PubMed  CAS  Google Scholar 

  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67(10):5427–5433

    PubMed  CAS  Google Scholar 

  • Cudic M, Otvos L Jr (2002) Intracellular targets of antibacterial peptides. Curr Drug Targets 3(2):101–106

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Lian JQ, Neoh HM, Reyes E, Hiramatsu K (2005) DNA microarray-based identification of genes associated with glycopeptide resistance in Staphylococcus aureus. Antimicrob Agents Chemother 49(8):3404–3413. doi:10.1128/AAC.49.8.3404-3413.2005

    Article  PubMed  CAS  Google Scholar 

  • Cullen TW, Madsen JA, Ivanov PL, Brodbelt JS, Trent MS (2012) Characterization of unique modification of flagellar rod protein FlgG by Campylobacter jejuni lipid A phosphoethanolamine transferase, linking bacterial locomotion and antimicrobial peptide resistance. J Biol Chem 287(5):3326–3336. doi:10.1074/jbc.M111.321737

    Article  PubMed  CAS  Google Scholar 

  • de la Fuente-Núñez C, Korolik V, Bains M, Nguyen U, Breidenstein EB, Horsman S, Lewenza S, Burrows L, Hancock RE (2012) Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother. 56(5):2696–704. doi:10.1128/AAC.00064-12

    Google Scholar 

  • Dean SN, Bishop BM, van Hoek ML (2011) Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: D-enantiomer of LL-37. Front Microbiol 2:128. doi:10.3389/fmicb.2011.00128

    PubMed  CAS  Google Scholar 

  • del Castillo FJ, del Castillo I, Moreno F (2001) Construction and characterization of mutations at codon 751 of the Escherichia coli gyrB gene that confer resistance to the antimicrobial peptide microcin B17 and alter the activity of DNA gyrase. J Bacteriol 183(6):2137–2140. doi:10.1128/JB.183.6.2137-2140.2001

    Article  PubMed  Google Scholar 

  • Dintner S, Staron A, Berchtold E, Petri T, Mascher T, Gebhard S (2011) Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes bacteria. J Bacteriol 193(15):3851–3862. doi:JB.05175-11[pii]10.1128/JB.05175-11

    Article  PubMed  CAS  Google Scholar 

  • Dorrer E, Teuber M (1977) Induction of polymyxin resistance in Pseudomonas fluorescens by phosphate limitation. Arch Microbiol 114(1):87–89

    Article  PubMed  CAS  Google Scholar 

  • Dorschner RA, Lopez-Garcia B, Peschel A, Kraus D, Morikawa K, Nizet V, Gallo RL (2006) The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. FASEB J 20(1):35–42. doi:20/1/35[pii]10.1096/fj.05-4406com

    Article  PubMed  CAS  Google Scholar 

  • Duval BD, Mathew A, Satola SW, Shafer WM (2010) Altered growth, pigmentation, and antimicrobial susceptibility properties of Staphylococcus aureus due to loss of the major cold shock gene cspB. Antimicrob Agents Chemother 54(6):2283–2290. doi:10.1128/AAC.01786-09

    Article  PubMed  CAS  Google Scholar 

  • Ernst CM, Peschel A (2011) Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Mol Microbiol 80(2):290–299. doi:10.1111/j.1365-2958.2011.07576.x

    Article  PubMed  CAS  Google Scholar 

  • Erwin AL, Smith AL (2007) Nontypeable Haemophilus influenzae: understanding virulence and commensal behavior. Trends Microbiol 15(8):355–362. doi:S0966-842X(07)00109-6[pii]10.1016/j.tim.2007.06.004

    Article  PubMed  CAS  Google Scholar 

  • Fan X, Goldfine H, Lysenko E, Weiser JN (2001) The transfer of choline from the host to the bacterial cell surface requires glpQ in Haemophilus influenzae. Mol Microbiol 41(5):1029–1036. doi:mmi2571[pii]

    Article  PubMed  CAS  Google Scholar 

  • Farley MM, Shafer WM, Spitznagel JK (1987) Antimicrobial binding of a radiolabeled cationic neutrophil granule protein. Infect Immun 55(6):1536–1539

    PubMed  CAS  Google Scholar 

  • Farley MM, Shafer WM, Spitznagel JK (1988) Lipopolysaccharide structure determines ionic and hydrophobic binding of a cationic antimicrobial neutrophil granule protein. Infect Immun 56(6):1589–1592

    PubMed  CAS  Google Scholar 

  • Fields PI, Groisman EA, Heffron F (1989) A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243(4894 Pt 1):1059–1062

    Article  PubMed  CAS  Google Scholar 

  • Flannagan RS, Cosío G, Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7(5):355–366. doi:10.1038/nrmicro2128

    Article  PubMed  CAS  Google Scholar 

  • Friedrich C, Scott MG, Karunaratne N, Yan H, Hancock RE (1999) Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob Agents Chemother 43(7):1542–1548

    PubMed  CAS  Google Scholar 

  • Frigimelica E, Bartolini E, Galli G, Grandi G, Grifantini R (2008) Identification of 2 hypothetical genes involved in Neisseria meningitidis cathelicidin resistance. J Infect Dis 197(8):1124–1132. doi:10.1086/533456

    Article  PubMed  CAS  Google Scholar 

  • Froehlich BJ, Bates C, Scott JR (2009) Streptococcus pyogenes CovRS mediates growth in iron starvation and in the presence of the human cationic antimicrobial peptide LL-37. J Bacteriol 191(2):673–677. doi:JB.01256-08[pii]10.1128/JB.01256-08

    Article  PubMed  CAS  Google Scholar 

  • Frosch M, Weisgerber C, Meyer TF (1989) Molecular characterization and expression in Escherichia coli of the gene complex encoding the polysaccharide capsule of Neisseria meningitidis group B. Proc Natl Acad Sci USA 86(5):1669–1673

    Article  PubMed  CAS  Google Scholar 

  • Ganz T (2009) Iron in innate immunity: starve the invaders. Curr Opin Immunol 21(1):63–67. doi:S0952-7915(09)00012-0[pii]10.1016/j.coi.2009.01.011

    Article  PubMed  CAS  Google Scholar 

  • Gao LY, Laval F, Lawson EH, Groger RK, Woodruff A, Morisaki JH, Cox JS, Daffe M, Brown EJ (2003) Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 49(6):1547–1563. doi:3667[pii]

    Article  PubMed  CAS  Google Scholar 

  • Goytia M, Shafer WM (2010) Polyamines can increase resistance of Neisseria gonorrhoeae to mediators of the innate human host defense. Infect Immun 78(7):3187–3195. doi:IAI.01301-09[pii]10.1128/IAI.01301-09

    Article  PubMed  CAS  Google Scholar 

  • Groisman EA (2001) The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183(6):1835–1842. doi:10.1128/JB.183.6.1835-1842.2001

    Article  PubMed  CAS  Google Scholar 

  • Groisman EA, Chiao E, Lipps CJ, Heffron F (1989) Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc Natl Acad Sci USA 86(18):7077–7081

    Article  PubMed  CAS  Google Scholar 

  • Groisman EA, Parra-Lopez C, Salcedo M, Lipps CJ, Heffron F (1992) Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci USA 89(24):11939–11943

    Article  PubMed  CAS  Google Scholar 

  • Guina T, Yi EC, Wang H, Hackett M, Miller SI (2000) A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol 182(14):4077–4086

    Article  PubMed  CAS  Google Scholar 

  • Gunn JS (2008) The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol 16(6):284–290. doi:S0966-842X(08)00105-4[pii]10.1016/j.tim.2008.03.007

    Article  PubMed  CAS  Google Scholar 

  • Gunn JS, Miller SI (1996) PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J Bacteriol 178(23):6857–6864

    PubMed  CAS  Google Scholar 

  • Gunn JS, Lim KB, Krueger J, Kim K, Guo L, Hackett M, Miller SI (1998) PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 27(6):1171–1182

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Lim KB, Poduje CM, Daniel M, Gunn JS, Hackett M, Miller SI (1998) Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95(2):189–198. doi:S0092-8674(00)81750-X[pii]

    Article  PubMed  CAS  Google Scholar 

  • Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5(6):951–959. doi:10.1586/14787210.5.6.951

    Article  PubMed  CAS  Google Scholar 

  • Hancock RE (1997) Peptide antibiotics. Lancet 349(9049):418–422. doi:S0140-6736(97)80051-7[pii]10.1016/S0140-6736(97)80051-7

    Article  PubMed  CAS  Google Scholar 

  • Hancock RE, McPhee JB (2005) Salmonella’s sensor for host defense molecules. Cell 122(3):320–322. doi:S0092-8674(05)00754-3[pii]10.1016/j.cell.2005.07.023

    Article  PubMed  CAS  Google Scholar 

  • Helander IM, Kilpelainen I, Vaara M (1994) Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study. Mol Microbiol 11(3):481–487

    Article  PubMed  CAS  Google Scholar 

  • Hiron A, Falord M, Valle J, Debarbouille M, Msadek T (2011) Bacitracin and nisin resistance in Staphylococcus aureus: a novel pathway involving the BraS/BraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters. Mol Microbiol. doi:10.1111/j.1365-2958.2011.07735.x

  • Huang HW (2006) Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochim Biophys Acta 1758(9):1292–1302. doi:S0005-2736(06)00041-1[pii]10.1016/j.bbamem.2006.02.001

    Article  PubMed  CAS  Google Scholar 

  • Husain F, Nikaido H (2010) Substrate path in the AcrB multidrug efflux pump of Escherichia coli. Mol Microbiol 78(2):320–330. doi:10.1111/j.1365-2958.2010.07330.x

    Article  PubMed  CAS  Google Scholar 

  • Institute Clinical and Laboratory Standard (2009) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, vol M07-A8, 8th edn. Clinical and Laboratory Standard Institute, Wayne, PA

    Google Scholar 

  • Islam D, Bandholtz L, Nilsson J, Wigzell H, Christensson B, Agerberth B, Gudmundsson G (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7(2):180–185. doi:10.1038/84627

    Article  PubMed  CAS  Google Scholar 

  • Jerse AE, Sharma ND, Simms AN, Crow ET, Snyder LA, Shafer WM (2003) A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect Immun 71(10):5576–5582

    Article  PubMed  CAS  Google Scholar 

  • Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172(2):1169–1176

    PubMed  CAS  Google Scholar 

  • Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273(6):3718–3724

    Article  PubMed  CAS  Google Scholar 

  • Johansson L, Thulin P, Sendi P, Hertzen E, Linder A, Akesson P, Low DE, Agerberth B, Norrby-Teglund A (2008) Cathelicidin LL-37 in severe Streptococcus pyogenes soft tissue infections in humans. Infect Immun 76(8):3399–3404. doi:10.1128/IAI.01392-07

    Article  PubMed  CAS  Google Scholar 

  • Johnson CR, Newcombe J, Thorne S, Borde HA, Eales-Reynolds LJ, Gorringe AR, Funnell SG, McFadden JJ (2001) Generation and characterization of a PhoP homologue mutant of Neisseria meningitidis. Mol Microbiol 39(5):1345–1355. doi:mmi2324[pii]

    Article  PubMed  CAS  Google Scholar 

  • Jones A, Georg M, Maudsdotter L, Jonsson AB (2009) Endotoxin, capsule, and bacterial attachment contribute to Neisseria meningitidis resistance to the human antimicrobial peptide LL-37. J Bacteriol 191(12):3861–3868. doi:JB.01313-08[pii]10.1128/JB.01313-08

    Article  PubMed  CAS  Google Scholar 

  • Kai-Larsen Y, Luthje P, Chromek M, Peters V, Wang X, Holm A, Kadas L, Hedlund KO, Johansson J, Chapman MR, Jacobson SH, Romling U, Agerberth B, Brauner A (2010) Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog 6(7):e1001010. doi:10.1371/journal.ppat.1001010

    Article  PubMed  CAS  Google Scholar 

  • Karbarz MJ, Kalb SR, Cotter RJ, Raetz CR (2003) Expression cloning and biochemical characterization of a Rhizobium leguminosarum lipid A 1-phosphatase. J Biol Chem 278(41):39269–39279. doi:10.1074/jbc.M305830200M305830200[pii]

    Article  PubMed  CAS  Google Scholar 

  • Katzif S, Danavall D, Bowers S, Balthazar JT, Shafer WM (2003) The major cold shock gene, cspA, is involved in the susceptibility of Staphylococcus aureus to an antimicrobial peptide of human cathepsin G. Infect Immun 71(8):4304–4312

    Article  PubMed  CAS  Google Scholar 

  • Khuller GK, Subrahmanyam D (1970) On the ornithinyl ester of phosphatidylglycerol of Mycobacterium 607. J Bacteriol 101(2):654–656

    PubMed  CAS  Google Scholar 

  • Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298(15):1763–1771. doi:10.1001/jama.298.15.1763

    Article  PubMed  CAS  Google Scholar 

  • Klotman ME, Rapista A, Teleshova N, Micsenyi A, Jarvis GA, Lu W, Porter E, Chang TL (2008) Neisseria gonorrhoeae-induced human defensins 5 and 6 increase HIV infectivity: role in enhanced transmission. J Immunol 180(9):6176–6185. doi:180/9/6176[pii]

    PubMed  CAS  Google Scholar 

  • Kocianova S, Vuong C, Yao Y, Voyich JM, Fischer ER, DeLeo FR, Otto M (2005) Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Invest 115(3):688–694. doi:10.1172/JCI23523

    PubMed  CAS  Google Scholar 

  • Koo SP, Bayer AS, Yeaman MR (2001) Diversity in antistaphylococcal mechanisms among membrane-targeting antimicrobial peptides. Infect Immun 69(8):4916–4922. doi:10.1128/IAI.69.8.4916-4922.2001

    Article  PubMed  CAS  Google Scholar 

  • Koprivnjak T, Peschel A, Gelb MH, Liang NS, Weiss JP (2002) Role of charge properties of bacterial envelope in bactericidal action of human group IIA phospholipase A2 against Staphylococcus aureus. J Biol Chem 277(49):47636–47644. doi:10.1074/jbc.M205104200M205104200[pii]

    Article  PubMed  CAS  Google Scholar 

  • Kowalski TJ, Berbari EF, Osmon DR (2005) Epidemiology, treatment, and prevention of community-acquired methicillin-resistant Staphylococcus aureus infections. Mayo Clin Proc 80(9):1201–1207, quiz 1208

    Article  PubMed  Google Scholar 

  • Kraus D, Herbert S, Kristian SA, Khosravi A, Nizet V, Gotz F, Peschel A (2008) The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses. BMC Microbiol 8:85. doi:1471-2180-8-85[pii]10.1186/1471-2180-8-85

    Article  PubMed  CAS  Google Scholar 

  • Kristian SA, Datta V, Weidenmaier C, Kansal R, Fedtke I, Peschel A, Gallo RL, Nizet V (2005) D-alanylation of teichoic acids promotes group a Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187(19):6719–6725. doi:187/19/6719[pii]10.1128/JB.187.19.6719-6725.2005

    Article  PubMed  CAS  Google Scholar 

  • Kupferwasser LI, Skurray RA, Brown MH, Firth N, Yeaman MR, Bayer AS (1999) Plasmid-mediated resistance to thrombin-induced platelet microbicidal protein in staphylococci: role of the qacA locus. Antimicrob Agents Chemother 43(10):2395–2399

    PubMed  CAS  Google Scholar 

  • Kuroda M, Kuwahara-Arai K, Hiramatsu K (2000) Identification of the up- and down-regulated genes in vancomycin-resistant Staphylococcus aureus strains Mu3 and Mu50 by cDNA differential hybridization method. Biochem Biophys Res Commun 269(2):485–490. doi:10.1006/bbrc.2000.2277

    Article  PubMed  CAS  Google Scholar 

  • Laarman AJ, Ruyken M, Malone CL, van Strijp JA, Horswill AR, Rooijakkers SH (2011) Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J Immunol 186(11):6445–6453. doi:jimmunol.1002948[pii]10.4049/jimmunol.1002948

    Article  PubMed  CAS  Google Scholar 

  • Lai Y, Villaruz AE, Li M, Cha DJ, Sturdevant DE, Otto M (2007) The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. Mol Microbiol 63(2):497–506. doi:MMI5540[pii]10.1111/j.1365-2958.2006.05540.x

    Article  PubMed  CAS  Google Scholar 

  • Lauth X, von Kockritz-Blickwede M, McNamara CW, Myskowski S, Zinkernagel AS, Beall B, Ghosh P, Gallo RL, Nizet V (2009) M1 protein allows Group A streptococcal survival in phagocyte extracellular traps through cathelicidin inhibition. J Innate Immun 1(3):202–214. doi:10.1159/000203645

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Hsu FF, Turk J, Groisman EA (2004) The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J Bacteriol 186(13):4124–4133. doi:10.1128/JB.186.13.4124-4133.2004186/13/4124[pii]

    Article  PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T, Selsted ME (1988) Oxygen-independent bactericidal systems—mechanisms and disorders. Hematol Oncol Clin North Am 2(1):159–169

    PubMed  CAS  Google Scholar 

  • Leid JG, Shirtliff ME, Costerton JW, Stoodley P (2002) Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70(11):6339–6345

    Article  PubMed  CAS  Google Scholar 

  • Lewenza S, Falsafi RK, Winsor G, Gooderham WJ, McPhee JB, Brinkman FS, Hancock RE (2005) Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: a tool for identifying differentially regulated genes. Genome Res 15(4):583–589. doi:15/4/583[pii]10.1101/gr.3513905

    Article  PubMed  CAS  Google Scholar 

  • Lewis LA, Choudhury B, Balthazar JT, Martin LE, Ram S, Rice PA, Stephens DS, Carlson R, Shafer WM (2009) Phosphoethanolamine substitution of lipid A and resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides and complement-mediated killing by normal human serum. Infect Immun 77(3):1112–1120. doi:IAI.01280-08[pii]10.1128/IAI.01280-08

    Article  PubMed  CAS  Google Scholar 

  • Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M (2007a) The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66(5):1136–1147. doi:MMI5986[pii]10.1111/j.1365-2958.2007.05986.x

    Article  PubMed  CAS  Google Scholar 

  • Li M, Lai Y, Villaruz AE, Cha DJ, Sturdevant DE, Otto M (2007b) Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci USA 104(22):9469–9474. doi:0702159104[pii]10.1073/pnas.0702159104

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Wang Y, Hoang KV (2009) Systematic identification of genetic loci required for polymyxin resistance in Campylobacter jejuni using an efficient in vivo transposon mutagenesis system. Foodborne Pathog Dis 6(2):173–185. doi:10.1089/fpd.2008.0177

    Article  PubMed  CAS  Google Scholar 

  • Llobet E, Tomas JM, Bengoechea JA (2008) Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology 154(Pt 12):3877–3886. doi:154/12/3877[pii]10.1099/mic.0.2008/022301-0

    Article  PubMed  CAS  Google Scholar 

  • Lomovskaya O, Bostian KA (2006) Practical applications and feasibility of efflux pump inhibitors in the clinic–a vision for applied use. Biochem Pharmacol 71(7):910–918. doi:S0006-2952(05)00815-4[pii]10.1016/j.bcp. 2005.12.008

    Article  PubMed  CAS  Google Scholar 

  • Lysenko ES, Gould J, Bals R, Wilson JM, Weiser JN (2000) Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAP18 expressed in the upper respiratory tract. Infect Immun 68(3):1664–1671

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane EL, Kwasnicka A, Ochs MM, Hancock RE (1999) PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 34(2):305–316. doi:mmi1600[pii]

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane EL, Kwasnicka A, Hancock RE (2000) Role of Pseudomonas aeruginosa PhoP-PhoQ in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology 146(Pt 10):2543–2554

    PubMed  CAS  Google Scholar 

  • Madan R, Rastogi R, Parashuraman S, Mukhopadhyay A (2012) Salmonella acquires lysosome-associated membrane protein 1 (LAMP1) on phagosomes from golgi via SipC protein-mediated recruitment of host Syntaxin6. J Biol Chem 287(8):5574–5587. doi:10.1074/jbc.M111.286120

    Article  PubMed  CAS  Google Scholar 

  • Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426(6964):306–310. doi:10.1038/nature02122nature02122[pii]

    Article  PubMed  CAS  Google Scholar 

  • Maloney E, Stankowska D, Zhang J, Fol M, Cheng QJ, Lun S, Bishai WR, Rajagopalan M, Chatterjee D, Madiraju MV (2009) The two-domain LysX protein of Mycobacterium tuberculosis is required for production of lysinylated phosphatidylglycerol and resistance to cationic antimicrobial peptides. PLoS Pathog 5(7):e1000534. doi:10.1371/journal.ppat.1000534

    Article  PubMed  CAS  Google Scholar 

  • Mandin P, Fsihi H, Dussurget O, Vergassola M, Milohanic E, Toledo-Arana A, Lasa I, Johansson J, Cossart P (2005) VirR, a response regulator critical for Listeria monocytogenes virulence. Mol Microbiol 57(5):1367–1380. doi:MMI4776[pii]10.1111/j.1365-2958.2005.04776.x

    Article  PubMed  CAS  Google Scholar 

  • Marra MN, Wilde CG, Griffith JE, Snable JL, Scott RW (1990) Bactericidal/permeability-increasing protein has endotoxin-neutralizing activity. J Immunol 144(2):662–666

    PubMed  CAS  Google Scholar 

  • Mason KM, Munson RS Jr, Bakaletz LO (2005) A mutation in the sap operon attenuates survival of nontypeable Haemophilus influenzae in a chinchilla model of otitis media. Infect Immun 73(1):599–608. doi:73/1/599[pii]10.1128/IAI.73.1.599-608.2005

    Article  PubMed  CAS  Google Scholar 

  • Mason KM, Bruggeman ME, Munson RS, Bakaletz LO (2006) The non-typeable Haemophilus influenzae Sap transporter provides a mechanism of antimicrobial peptide resistance and SapD-dependent potassium acquisition. Mol Microbiol 62(5):1357–1372. doi:MMI5460[pii]10.1111/j.1365-2958.2006.05460.x

    Article  PubMed  CAS  Google Scholar 

  • Mason KM, Raffel FK, Ray WC, Bakaletz LO (2011) Heme utilization by nontypeable Haemophilus influenzae is essential and dependent on Sap transporter function. J Bacteriol 193(10):2527–2535. doi:JB.01313-10[pii]10.1128/JB.01313-10

    Article  PubMed  CAS  Google Scholar 

  • Matson JS, Yoo HJ, Hakansson K, Dirita VJ (2010) Polymyxin B resistance in El Tor Vibrio cholerae requires lipid acylation catalyzed by MsbB. J Bacteriol 192(8):2044–2052. doi:JB.00023-10[pii]10.1128/JB.00023-10

    Article  PubMed  CAS  Google Scholar 

  • McCoy AJ, Liu H, Falla TJ, Gunn JS (2001) Identification of Proteus mirabilis mutants with increased sensitivity to antimicrobial peptides. Antimicrob Agents Chemother 45(7):2030–2037. doi:10.1128/AAC.45.7.2030-2037.2001

    Article  PubMed  CAS  Google Scholar 

  • McNabb SJ, Jajosky RA, Hall-Baker PA, Adams DA, Sharp P, Worshams C, Anderson WJ, Javier AJ, Jones GJ, Nitschke DA, Rey A, Wodajo MS (2008) Summary of notifiable diseases–United States, 2006. MMWR Morb Mortal Wkly Rep 55(53):1–92. doi:mm5553a1[pii]

    PubMed  Google Scholar 

  • McPhee JB, Lewenza S, Hancock RE (2003) Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol 50(1):205–217. doi:3673[pii]

    Article  PubMed  CAS  Google Scholar 

  • Messner P, Steiner K, Zarschler K, Schaffer C (2008) S-layer nanoglycobiology of bacteria. Carbohydr Res 343(12):1934–1951. doi:S0008-6215(08)00004-9[pii]10.1016/j.carres.2007.12.025

    Article  PubMed  CAS  Google Scholar 

  • Miller SI, Kukral AM, Mekalanos JJ (1989) A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci USA 86(13):5054–5058

    Article  PubMed  CAS  Google Scholar 

  • Miller SI, Pulkkinen WS, Selsted ME, Mekalanos JJ (1990) Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect Immun 58(11):3706–3710

    PubMed  CAS  Google Scholar 

  • Mishra NN, Liu GY, Yeaman MR, Nast CC, Proctor RA, McKinnell J, Bayer AS (2011) Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob Agents Chemother 55(2):526–531. doi:AAC.00680-10[pii]10.1128/AAC.00680-10

    Article  PubMed  CAS  Google Scholar 

  • Moranta D, Regueiro V, March C, Llobet E, Margareto J, Larrarte E, Garmendia J, Bengoechea JA (2010) Klebsiella pneumoniae capsule polysaccharide impedes the expression of beta-defensins by airway epithelial cells. Infect Immun 78(3):1135–1146. doi:IAI.00940-09[pii]10.1128/IAI.00940-09

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz SM, Ernst RK, Miller SI (2004) PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol 186(2):575–579

    Article  PubMed  CAS  Google Scholar 

  • Mount KL, Townsend CA, Rinker SD, Gu X, Fortney KR, Zwickl BW, Janowicz DM, Spinola SM, Katz BP, Bauer ME (2010) Haemophilus ducreyi SapA contributes to cathelicidin resistance and virulence in humans. Infect Immun 78(3):1176–1184. doi:IAI.01014-09[pii]10.1128/IAI.01014-09

    Article  PubMed  CAS  Google Scholar 

  • Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4(11):e1000213. doi:10.1371/journal.ppat.1000213

    Article  PubMed  CAS  Google Scholar 

  • Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443(7108):173–179. doi:nature05076[pii]10.1038/nature05076

    Article  PubMed  CAS  Google Scholar 

  • Nahaie MR, Goodfellow M, Minnikin DE, Hajek V (1984) Polar lipid and isoprenoid quinone composition in the classification of Staphylococcus. J Gen Microbiol 130(9):2427–2437

    PubMed  CAS  Google Scholar 

  • Navarre WW, Halsey TA, Walthers D, Frye J, McClelland M, Potter JL, Kenney LJ, Gunn JS, Fang FC, Libby SJ (2005) Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. Mol Microbiol 56(2):492–508. doi:MMI4553[pii]10.1111/j.1365-2958.2005.04553.x

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 67(4):686–723

    Article  PubMed  CAS  Google Scholar 

  • Newcombe J, Eales-Reynolds LJ, Wootton L, Gorringe AR, Funnell SG, Taylor SC, McFadden JJ (2004) Infection with an avirulent phoP mutant of Neisseria meningitidis confers broad cross-reactive immunity. Infect Immun 72(1):338–344

    Article  PubMed  CAS  Google Scholar 

  • Nishi H, Komatsuzawa H, Fujiwara T, McCallum N, Sugai M (2004) Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Antimicrob Agents Chemother 48(12):4800–4807. doi:48/12/4800[pii]10.1128/AAC.48.12.4800-4807.2004

    Article  PubMed  CAS  Google Scholar 

  • Nizet V, Gallo RL (2002) Surviving innate immunity. Trends Microbiol 10(8):358–359

    Article  PubMed  CAS  Google Scholar 

  • Nuding S, Zabel LT, Enders C, Porter E, Fellermann K, Wehkamp J, Mueller HA, Stange EF (2009) Antibacterial activity of human defensins on anaerobic intestinal bacterial species: a major role of HBD-3. Microbes Infect 11(3):384–393. doi:S1286-4579(09)00004-5[pii]10.1016/j.micinf.2009.01.001

    Article  PubMed  CAS  Google Scholar 

  • Nyberg P, Rasmussen M, Bjorck L (2004) Alpha2-macroglobulin-proteinase complexes protect Streptococcus pyogenes from killing by the antimicrobial peptide LL-37. J Biol Chem 279(51):52820–52823. doi:C400485200[pii]10.1074/jbc.C400485200

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S, Iwasaku K, Nakayama S, Kitawaki J, Unemo M (2011) Is Neisseria gonorrhoeae Initiating a future era of untreatable gonorrhea?: detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 55(7):3538–3545. doi:AAC.00325-11[pii]10.1128/AAC.00325-11

    Article  PubMed  CAS  Google Scholar 

  • Otto M (2009) Bacterial sensing of antimicrobial peptides. Contrib Microbiol 16:136–149. doi:000219377[pii]10.1159/000219377

    Article  PubMed  CAS  Google Scholar 

  • Otto M, Peschel A, Gotz F (1998) Producer self-protection against the lantibiotic epidermin by the ABC transporter EpiFEG of Staphylococcus epidermidis Tu3298. FEMS Microbiol Lett 166(2):203–211. doi:S0378109798003334[pii]

    PubMed  CAS  Google Scholar 

  • Ouyang J, Tian XL, Versey J, Wishart A, Li YH (2010) The BceABRS four-component system regulates the bacitracin-induced cell envelope stress response in Streptococcus mutans. Antimicrob Agents Chemother 54(9):3895–3906. doi:AAC.01802-09[pii]10.1128/AAC.01802-09

    Article  PubMed  CAS  Google Scholar 

  • Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76(9):4176–4182. doi:10.1128/IAI.00318-08IAI.00318-08[pii]

    Article  PubMed  CAS  Google Scholar 

  • Padilla E, Llobet E, Domenech-Sanchez A, Martinez-Martinez L, Bengoechea JA, Alberti S (2010) Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother 54(1):177–183. doi:AAC.00715-09[pii]10.1128/AAC.00715-09

    Article  PubMed  CAS  Google Scholar 

  • Park PW, Pier GB, Hinkes MT, Bernfield M (2001) Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature 411(6833):98–102. doi:10.1038/3507510035075100[pii]

    Article  PubMed  CAS  Google Scholar 

  • Parra-Lopez C, Baer MT, Groisman EA (1993) Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. EMBO J 12(11):4053–4062

    PubMed  CAS  Google Scholar 

  • Pence MA, Rooijakkers SH, Cogen AL, Cole JN, Hollands A, Gallo RL, Nizet V (2010) Streptococcal inhibitor of complement promotes innate immune resistance phenotypes of invasive M1T1 group A Streptococcus. J Innate Immun 2(6):587–595. doi:000317672[pii]10.1159/000317672

    Article  PubMed  CAS  Google Scholar 

  • Peschel A (2002) How do bacteria resist human antimicrobial peptides? Trends Microbiol 10(4):179–186. doi:S0966842X02023338[pii]

    Article  PubMed  CAS  Google Scholar 

  • Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4(7):529–536. doi:nrmicro1441[pii]10.1038/nrmicro1441

    Article  PubMed  CAS  Google Scholar 

  • Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274(13):8405–8410

    Article  PubMed  CAS  Google Scholar 

  • Peschel A, Vuong C, Otto M, Gotz F (2000) The D-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob Agents Chemother 44(10):2845–2847

    Article  PubMed  CAS  Google Scholar 

  • Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KP, van Strijp JA (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J Exp Med 193(9):1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Piddock LJ (2006) Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol 4(8):629–636. doi:nrmicro1464[pii]10.1038/nrmicro1464

    Article  PubMed  CAS  Google Scholar 

  • Prost LR, Miller SI (2008) The Salmonellae PhoQ sensor: mechanisms of detection of phagosome signals. Cell Microbiol 10(3):576–582. doi:CMI1111[pii]10.1111/j.1462-5822.2007.01111.x

    Article  PubMed  CAS  Google Scholar 

  • Qu X-D, Harwig SSL, Oren A, Shafer WM, Lehrer RI (1996) Susceptibility of Neisseria gonorrhoeae to protegrins. Infect Immun 64(4):1240–1245

    PubMed  CAS  Google Scholar 

  • Ray K, Marteyn B, Sansonetti PJ, Tang CM (2009) Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol 7(5):333–340. doi:10.1038/nrmicro2112

    Article  PubMed  CAS  Google Scholar 

  • Rest RF, Cooney MH, Spitznagel JK (1977) Susceptibility of lipopolysaccharide mutants to the bactericidal action of human neutrophil lysosomal fractions. Infect Immun 16(1):145–151

    PubMed  CAS  Google Scholar 

  • Rinker SD, Trombley MP, Gu X, Fortney KR, Bauer ME (2011) Deletion of mtrC in Haemophilus ducreyi increases sensitivity to human antimicrobial peptides and activates the CpxRA regulon. Infect Immun 79(6):2324–2334. doi:IAI.01316-10[pii]10.1128/IAI.01316-10

    Article  PubMed  CAS  Google Scholar 

  • Roland KL, Martin LE, Esther CR, Spitznagel JK (1993) Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new two-component regulatory system with a possible role in virulence. J Bacteriol 175(13):4154–4164

    PubMed  CAS  Google Scholar 

  • Roland KL, Esther CR, Spitznagel JK (1994) Isolation and characterization of a gene, pmrD, from Salmonella typhimurium that confers resistance to polymyxin when expressed in multiple copies. J Bacteriol 176(12):3589–3597

    PubMed  CAS  Google Scholar 

  • Rouquette C, Harmon JB, Shafer WM (1999) Induction of the mtrCDE-encoded efflux pump system of Neisseria gonorrhoeae requires MtrA, an AraC-like protein. Mol Microbiol 33(3):651–658. doi:mole1517[pii]

    Article  PubMed  CAS  Google Scholar 

  • Roy H, Ibba M (2008) RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors. Proc Natl Acad Sci USA 105(12):4667–4672. doi:0800006105[pii]10.1073/pnas.0800006105

    Article  PubMed  CAS  Google Scholar 

  • Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL (2003) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422(6931):522–526. doi:10.1038/nature01520nature01520[pii]

    Article  PubMed  CAS  Google Scholar 

  • Schmidtchen A, Frick IM, Bjorck L (2001) Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial alpha-defensin. Mol Microbiol 39(3):708–713. doi:mmi2251[pii]

    Article  PubMed  CAS  Google Scholar 

  • Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjorck L (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46(1):157–168

    Article  PubMed  CAS  Google Scholar 

  • Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J, Buchner J, Schaller M, Stange EF, Wehkamp J (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469(7330):419–423. doi:nature09674[pii]10.1038/nature09674

    Article  PubMed  CAS  Google Scholar 

  • Scott CC, Botelho RJ, Grinstein S (2003) Phagosome maturation: a few bugs in the system. J Membr Biol 193(3):137–152. doi:10.1007/s00232-002-2008-2

    Article  PubMed  CAS  Google Scholar 

  • Seib KL, Serruto D, Oriente F, Delany I, Adu-Bobie J, Veggi D, Arico B, Rappuoli R, Pizza M (2009) Factor H-binding protein is important for meningococcal survival in human whole blood and serum and in the presence of the antimicrobial peptide LL-37. Infect Immun 77(1):292–299. doi:IAI.01071-08[pii]10.1128/IAI.01071-08

    Article  PubMed  CAS  Google Scholar 

  • Shafer WM, Onunka VC (1989) Mechanism of staphylococcal resistance to non-oxidative antimicrobial action of neutrophils: importance of pH and ionic strength in determining the bactericidal action of cathepsin G. J Gen Microbiol 135(4):825–830

    PubMed  CAS  Google Scholar 

  • Shafer WM, Casey SG, Spitznagel JK (1984) Lipid A and resistance of Salmonella typhimurium to antimicrobial granule proteins of human neutrophil granulocytes. Infect Immun 43(3):834–838

    PubMed  CAS  Google Scholar 

  • Shafer WM, Qu X, Waring AJ, Lehrer RI (1998) Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Natl Acad Sci USA 95(4):1829–1833

    Article  PubMed  CAS  Google Scholar 

  • Shafer WM, Folster JP, Nicholas RA (2010) Molecular mechanisms of antibiotic resistance expressed by the pathogenic Neisseria. In: Genco CA, Wetzler L (eds) Neisseria. Molecular mechanisms of pathogenesis. Caister Academic, Norfolk, pp 245–268

    Google Scholar 

  • Shelton CL, Raffel FK, Beatty WL, Johnson SM, Mason KM (2011) Sap transporter mediated import and subsequent degradation of antimicrobial peptides in Haemophilus. PLoS Pathog 7(11):e1002360. doi:10.1371/journal.ppat.1002360

    Article  PubMed  CAS  Google Scholar 

  • Shprung T, Peleg A, Rosenfeld Y, Trieu-Cuot P, Shai Y (2012) Effect of PhoP-PhoQ activation by broad repertoire of antimicrobial peptides on bacterial resistance. J Biol Chem 287(7):4544–4551. doi:10.1074/jbc.M111.278523

    Article  PubMed  CAS  Google Scholar 

  • Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48(12):4673–4679. doi:48/12/4673[pii]10.1128/AAC.48.12.4673-4679.2004

    Article  PubMed  CAS  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414. doi:cshperspect.a000414[pii]10.1101/cshperspect.a000414

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762–764. doi:10.1038/35037627

    Article  PubMed  CAS  Google Scholar 

  • Slayden RA, Barry CE 3rd (2002) The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis. Tuberculosis (Edinb) 82(4–5):149–160. doi:S1472979202903331[pii]

    Article  CAS  Google Scholar 

  • Sochacki KA, Barns KJ, Bucki R, Weisshaar JC (2011) Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37. Proc Natl Acad Sci USA 108(16):E77–E81. doi:10.1073/pnas.1101130108

    Article  PubMed  Google Scholar 

  • Sorrell TC, Lehrer RI, Cline MJ (1978) Mechanism of nonspecific macrophage-mediated cytotoxicity: evidence for lack of dependence upon oxygen. J Immunol 120(2):347–352

    PubMed  CAS  Google Scholar 

  • Spinola SM, Bong CT, Faber AL, Fortney KR, Bennett SL, Townsend CA, Zwickl BE, Billings SD, Humphreys TL, Bauer ME, Katz BP (2003) Differences in host susceptibility to disease progression in the human challenge model of Haemophilus ducreyi infection. Infect Immun 71(11):6658–6663

    Article  PubMed  CAS  Google Scholar 

  • Spinosa MR, Progida C, Tala A, Cogli L, Alifano P, Bucci C (2007) The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect Immun 75(7):3594–3603. doi:IAI.01945-06[pii]10.1128/IAI.01945-06

    Article  PubMed  CAS  Google Scholar 

  • Spitznagel JK (1961) The effects of mammalian and other cationic polypeptides on the cytochemical character of bacterial cells. J Exp Med 114:1063–1078

    Article  PubMed  CAS  Google Scholar 

  • Spitznagel JK (1990) Antibiotic proteins of human neutrophils. J Clin Invest 86(5):1381–1386. doi:10.1172/JCI114851

    Article  PubMed  CAS  Google Scholar 

  • Spitznagel JK, Shafer WM (1985) Neutrophil killing of bacteria by oxygen-independent mechanisms: a historical summary. Rev Infect Dis 7(3):398–403

    Article  PubMed  CAS  Google Scholar 

  • Starner TD, Swords WE, Apicella MA, McCray PB Jr (2002) Susceptibility of nontypeable Haemophilus influenzae to human beta-defensins is influenced by lipooligosaccharide acylation. Infect Immun 70(9):5287–5289

    Article  PubMed  CAS  Google Scholar 

  • Staubitz P, Neumann H, Schneider T, Wiedemann I, Peschel A (2004) MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol Lett 231(1):67–71. doi:10.1016/S0378-1097(03)00921-2S0378109703009212[pii]

    Article  PubMed  CAS  Google Scholar 

  • Stephens DS (2009) Biology and pathogenesis of the evolutionarily successful, obligate human bacterium Neisseria meningitidis. Vaccine 27(Suppl 2):B71–B77. doi:S0264-410X(09)00635-5[pii]10.1016/j.vaccine.2009.04.070

    Article  PubMed  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138. doi:S0140673601053211[pii]

    Article  PubMed  CAS  Google Scholar 

  • Stumpe S, Schmid R, Stephens DL, Georgiou G, Bakker EP (1998) Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J Bacteriol 180(15):4002–4006

    PubMed  CAS  Google Scholar 

  • Symmons MF, Bokma E, Koronakis E, Hughes C, Koronakis V (2009) The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc Natl Acad Sci USA 106(17):7173–7178. doi:0900693106[pii]10.1073/pnas.0900693106

    Article  PubMed  CAS  Google Scholar 

  • Tada H, Sugawara S, Nemoto E, Takahashi N, Imamura T, Potempa J, Travis J, Shimauchi H, Takada H (2002) Proteolysis of CD14 on human gingival fibroblasts by arginine-specific cysteine proteinases from Porphyromonas gingivalis leading to down-regulation of lipopolysaccharide-induced interleukin-8 production. Infect Immun 70(6):3304–3307

    Article  PubMed  CAS  Google Scholar 

  • Trent MS (2004) Biosynthesis, transport, and modification of lipid A. Biochem Cell Biol 82(1):71–86. doi:10.1139/o03-070o03-070[pii]

    Article  PubMed  CAS  Google Scholar 

  • Tzeng YL, Datta A, Ambrose K, Lo M, Davies JK, Carlson RW, Stephens DS, Kahler CM (2004) The MisR/MisS two-component regulatory system influences inner core structure and immunotype of lipooligosaccharide in Neisseria meningitidis. J Biol Chem 279(33):35053–35062. doi:10.1074/jbc.M401433200M401433200[pii]

    Article  PubMed  CAS  Google Scholar 

  • Tzeng YL, Ambrose KD, Zughaier S, Zhou X, Miller YK, Shafer WM, Stephens DS (2005) Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 187(15):5387–5396. doi:187/15/5387-a[pii]10.1128/JB.187.15.5387-5396.2005

    Article  PubMed  CAS  Google Scholar 

  • Uchiya K, Barbieri MA, Funato K, Shah AH, Stahl PD, Groisman EA (1999) A Salmonella virulence protein that inhibits cellular trafficking. EMBO J 18(14):3924–3933. doi:10.1093/emboj/18.14.3924

    Article  PubMed  CAS  Google Scholar 

  • Ulvatne H, Haukland HH, Samuelsen O, Kramer M, Vorland LH (2002) Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B. J antimicrob chemother 50(4):461–467

    Article  PubMed  CAS  Google Scholar 

  • Vaara M, Vaara T, Jensen M, Helander I, Nurminen M, Rietschel ET, Makela PH (1981) Characterization of the lipopolysaccharide from the polymyxin-resistant pmrA mutants of Salmonella typhimurium. FEBS Lett 129(1):145–149

    Article  PubMed  CAS  Google Scholar 

  • Valdivia RH, Falkow S (1997) Fluorescence-based isolation of bacterial genes expressed within host cells. Science 277(5334):2007–2011

    Article  PubMed  CAS  Google Scholar 

  • Vesga O, Groeschel MC, Otten MF, Brar DW, Vann JM, Proctor RA (1996) Staphylococcus aureus small colony variants are induced by the endothelial cell intracellular milieu. J Infect Dis 173(3):739–742

    Article  PubMed  CAS  Google Scholar 

  • Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, Otto M (2004) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279(52):54881–54886. doi:M411374200[pii]10.1074/jbc.M411374200

    Article  PubMed  CAS  Google Scholar 

  • Wade D, Boman A, Wahlin B, Drain CM, Andreu D, Boman HG, Merrifield RB (1990) All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA 87(12):4761–4765

    Article  PubMed  CAS  Google Scholar 

  • Warner DM, Folster JP, Shafer WM, Jerse AE (2007) Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J Infect Dis 196(12):1804–1812. doi:10.1086/522964

    Article  PubMed  CAS  Google Scholar 

  • Warner DM, Shafer WM, Jerse AE (2008) Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE Efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol Microbiol 70(2):462–478. doi:MMI6424[pii]10.1111/j.1365-2958.2008.06424.x

    Article  PubMed  CAS  Google Scholar 

  • Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, Shen B, Schaeffeler E, Schwab M, Linzmeier R, Feathers RW, Chu H, Lima H Jr, Fellermann K, Ganz T, Stange EF, Bevins CL (2005) Reduced paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA 102(50):18129–18134. doi:0505256102[pii]10.1073/pnas.0505256102

    Article  PubMed  CAS  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55. doi:10.1124/pr.55.1.2

    Article  PubMed  CAS  Google Scholar 

  • Zähner D, Zhou X, Chancey ST, Pohl J, Shafer WM, Stephens DS (2010) Human antimicrobial peptide LL-37 induces MefE/Mel-mediated macrolide resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 54(8):3516–3519. doi:10.1128/AAC.01756-09

    Article  PubMed  CAS  Google Scholar 

  • Zeya HI, Spitznagel JK (1966a) Cationic proteins of polymorphonuclear leukocyte lysosomes. I. Resolution of antibacterial and enzymatic activities. J Bacteriol 91(2):750–754

    PubMed  CAS  Google Scholar 

  • Zeya HI, Spitznagel JK (1966b) Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties, and mechanism of antibacterial action. J Bacteriol 91(2):755–762

    PubMed  CAS  Google Scholar 

  • Zipfel PF, Reuter M (2009) Complement activation products C3a and C4a as endogenous antimicrobial peptides. Int J Pept Res Th 15(2):87–95. doi:10.1007/s10989-009-9180-5

    Article  CAS  Google Scholar 

  • Zughaier SM, Svoboda P, Pohl J, Stephens DS, Shafer WM (2010) The human host defense peptide LL-37 interacts with Neisseria meningitidis capsular polysaccharides and inhibits inflammatory mediators release. PLoS One 5(10):e13627. doi:10.1371/journal.pone.0013627

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Lane Pucko for help in manuscript preparation and P. Rather for critical review. The senior author (W. M. S.) is indebted to J.K. Spitznagel, M.D., for his mentorship and introducing him to CAMP research 30 years ago. This work was supported by the NIH grants R37 AI021150 and U19 AI031496 and a VA Merit Award from the Department of Veterans Affairs. W. M. S. was supported in part by a Senior Research Career Scientist Award from the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Shafer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel AG

About this chapter

Cite this chapter

Goytia, M., Kandler, J.L., Shafer, W.M. (2013). Mechanisms and Significance of Bacterial Resistance to Human Cationic Antimicrobial Peptides. In: Hiemstra, P., Zaat, S. (eds) Antimicrobial Peptides and Innate Immunity. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0541-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0541-4_9

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0540-7

  • Online ISBN: 978-3-0348-0541-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics