Skip to main content

Inflammasome Activation by Danger Signals

  • Chapter
  • First Online:
The Inflammasomes

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The concept of danger signals as a crucial element to activate the immune response has risen in the last 15 years and has been opposed to the classical model of the immune response recognizing non-self patterns. Danger signals are endogenous host molecules that are not in place; such signals include the presence of ATP or uric acid in the extracellular space, the breakdown or release of soluble extracellular matrix components or the presence of dsDNA in the cytosol of the cell. All these danger signals have been proved to activate the release of mature interleukin (IL)-1 through caspase-1 activation. Caspase-1 activation is dependent on the assembly of an intracellular protein platform termed the inflammasome, which is formed by an NLR receptor that is responsible for detecting such danger signals. Knowledge of the involvement of inflammasome activation by danger signals in different diseases is increasing every year and has emerged as responsible for the sterile inflammatory response. This concept of danger signals activating the immune system could be the origin of the complex cytokine network which orchestrates the inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auron PE, Webb AC, Rosenwasser LJ, Mucci SF, Rich A, Wolff SM, Dinarello CA (1984) Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci USA 81:7907–7911

    Article  PubMed  CAS  Google Scholar 

  2. Black RA, Kronheim SR, Cantrell M, Deeley MC, March CJ, Prickett KS, Wignall J, Conlon PJ, Cosman D, Hopp TP (1988) Generation of biologically active interleukin-1 beta by proteolytic cleavage of the inactive precursor. J Biol Chem 263:9437–9442

    PubMed  CAS  Google Scholar 

  3. Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C, McDowell J, Paskind M, Rodman L, Salfeld J (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80:401–411

    Article  PubMed  CAS  Google Scholar 

  4. Kuida K, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS, Flavell RA (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267:2000–2003

    Article  PubMed  CAS  Google Scholar 

  5. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  PubMed  CAS  Google Scholar 

  6. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  PubMed  CAS  Google Scholar 

  7. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    Article  PubMed  CAS  Google Scholar 

  8. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045

    Article  PubMed  CAS  Google Scholar 

  9. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  PubMed  CAS  Google Scholar 

  10. Bianchi ME (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81:1–5

    Article  PubMed  CAS  Google Scholar 

  11. Moussion C, Ortega N, Girard J (2008) The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS One 3:e3331

    Article  PubMed  Google Scholar 

  12. Luheshi NM, Rothwell NJ, Brough D (2009) The dynamics and mechanisms of interleukin-1alpha and Beta nuclear import. Traffic 10:16–25

    Article  PubMed  CAS  Google Scholar 

  13. Kenny EF, O’Neill LA (2008) Signalling adaptors used by Toll-like receptors: an update. Cytokine 43:342–349

    Article  PubMed  CAS  Google Scholar 

  14. Hogquist KA, Nett MA, Unanue ER, Chaplin DD (1991) Interleukin 1 is processed and released during apoptosis. Proc Natl Acad Sci USA 88:8485–8489

    Article  PubMed  CAS  Google Scholar 

  15. Verhoef PA, Kertesy SB, Lundberg K, Kahlenberg JM, Dubyak GR (2005) Inhibitory effects of chloride on the activation of caspase-1, IL-1beta secretion, and cytolysis by the P2X7 receptor. J Immunol 175:7623–7634

    PubMed  CAS  Google Scholar 

  16. Pelegrin P, Barroso-Gutierrez C, Surprenant A (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J Immunol 180:7147–7157

    PubMed  CAS  Google Scholar 

  17. MacKenzie AB, Wilson H, Kiss-Toth E, Dower SK, North RA, Surprenant A (2001) Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 15:825–835

    Article  PubMed  CAS  Google Scholar 

  18. Brough D, Rothwell N (2007) Caspase-1-dependent processing of pro-interleukin-1beta is cytosolic and precedes cell death. J Cell Sci 120:772–781

    Article  PubMed  CAS  Google Scholar 

  19. Andrei C, Dazzi C, Lotti L, Torrisi MR, Chimini G, Rubartelli A (1999) The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles. Mol Biol Cell 10:1463–1475

    PubMed  CAS  Google Scholar 

  20. Qu Y, Franchi L, Nunez G, Dubyak GR (2007) Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol 179:1913–1925

    PubMed  CAS  Google Scholar 

  21. Pelegrin P (2008) Targeting interleukin-1 signaling in chronic inflammation: focus on P2X(7) receptor and Pannexin-1. Drug News Perspect 21:424–433

    PubMed  CAS  Google Scholar 

  22. Surprenant A, North RA (2008) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359

    Article  Google Scholar 

  23. Perregaux DG, Bhavsar K, Contillo L, Shi J, Gabel CA (2002) Antimicrobial peptides initiate IL-1 beta posttranslational processing: a novel role beyond innate immunity. J Immunol 168:3024–3032

    PubMed  CAS  Google Scholar 

  24. Yamasaki K, Muto J, Taylor KR, Cogen AL, Audish D, Bertin J, Grant EP, Coyle AJ, Misaghi A, Hoffman HM et al (2009) NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem 284:12762–12771

    Article  PubMed  CAS  Google Scholar 

  25. Halle A, Hornung V, Petzold G, Stewart C, Monks B, Reinheckel T, Fitzgerald KA, Latz E, Moore K, Golenbock D (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    Article  PubMed  CAS  Google Scholar 

  26. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241

    Article  PubMed  CAS  Google Scholar 

  27. Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S, Beer HD (2007) The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol 17:1140–1145

    Article  PubMed  CAS  Google Scholar 

  28. Watanabe H, Gaide O, Pétrilli V, Martinon F, Contassot E, Roques S, Kummer J, Tschopp J, French L (2007) Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity. J Investig Dermatol 127:1956–1963

    Article  PubMed  CAS  Google Scholar 

  29. Muruve D, Pétrilli V, Zaiss A, White L, Clark S, Ross PJ, Parks R, Tschopp J (2008) The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103–107

    Article  PubMed  CAS  Google Scholar 

  30. Li H, Ambade A, Re F (2009) Cutting edge: necrosis activates the NLRP3 inflammasome. J Immunol 183:1528–1532

    Article  PubMed  CAS  Google Scholar 

  31. Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF, Bruckner P, Pfeilschifter J, Schaefer RM, Groene HJ et al (2009) Biglycan: a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem 284:24035–24048

    Article  PubMed  CAS  Google Scholar 

  32. Fountain SJ, Burnstock G (2009) An evolutionary history of P2X receptors. Purinergic Signal 5:269–272

    Article  PubMed  CAS  Google Scholar 

  33. Bird S, Zou J, Wang T, Munday B, Cunningham C, Secombes CJ (2002) Evolution of interleukin-1beta. Cytokine Growth Factor Rev 13:483–502

    Article  PubMed  CAS  Google Scholar 

  34. Sodergren E, Weinstock G, Davidson E, Cameron R, Gibbs R, Angerer R, Angerer L, Arnone M, Burgess D, Burke R et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952

    Article  PubMed  Google Scholar 

  35. López-Castejón G, Young MT, Meseguer J, Surprenant A, Mulero V (2007) Characterization of ATP-gated P2X7 receptors in fish provides new insights into the mechanism of release of the leaderless cytokine interleukin-1β. Mol Immunol 44:1286–1299

    Article  PubMed  Google Scholar 

  36. López-Castejón G, Sepulcre MP, Mulero I, Pelegrin P, Meseguer J, Mulero V (2008) Molecular and functional characterization of gilthead seabream Sparus aurata caspase-1: the first identification of an inflammatory caspase in fish. Mol Immunol 45:49–57

    Article  PubMed  Google Scholar 

  37. Pelegrin P, Surprenant A (2009) The P2X(7) receptor-pannexin connection to dye uptake and IL-1beta release. Purinergic Signal 5:129–137

    Article  PubMed  CAS  Google Scholar 

  38. Eltzschig HK, Macmanus CF, Colgan SP (2008) Neutrophils as sources of extracellular nucleotides: functional consequences at the vascular interface. Trends Cardiovasc Med 18:103–107

    Article  PubMed  CAS  Google Scholar 

  39. Beigi R, Kobatake E, Aizawa M, Dubyak GR (1999) Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am J Physiol 276:C267–C278

    PubMed  CAS  Google Scholar 

  40. Bulanova E, Bulfone-Paus S (2010) P2 receptor-mediated signaling in mast cell biology. Purinergic Signal 6(1):3–17

    Article  PubMed  CAS  Google Scholar 

  41. Piccini A, Carta S, Tassi S, Lasiglié D, Fossati G, Rubartelli A (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci USA 105:8067–8072

    Article  PubMed  CAS  Google Scholar 

  42. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K et al (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455:808–812

    Article  PubMed  CAS  Google Scholar 

  43. Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 3:e2599

    Article  PubMed  Google Scholar 

  44. Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G, Ullrich E et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15:1170–1178

    Article  PubMed  CAS  Google Scholar 

  45. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    Article  PubMed  CAS  Google Scholar 

  46. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738

    Article  PubMed  CAS  Google Scholar 

  47. MacKenzie AB, Young MT, Adinolfi E, Surprenant A (2005) Pseudoapoptosis induced by brief activation of ATP-gated P2X7 receptors. J Biol Chem 280:33968–33976

    Article  PubMed  CAS  Google Scholar 

  48. Pelegrin P, Surprenant A (2007) Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. J Biol Chem 282:2386–2394

    Article  PubMed  CAS  Google Scholar 

  49. Hewinson J, Moore SF, Glover C, Watts AG, MacKenzie AB (2008) A key role for redox signaling in rapid P2X7 receptor-induced IL-1 beta processing in human monocytes. J Immunol 180:8410–8420

    PubMed  CAS  Google Scholar 

  50. Mariathasan S, Newton K, Monack DM, Vucic D, French D, Lee WP, Roose-Girma M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218

    Article  PubMed  CAS  Google Scholar 

  51. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232

    Article  PubMed  CAS  Google Scholar 

  52. Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant E, Bertin J, Coyle AJ, Galán JE, Askenase PW et al (2006) Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24:317–327

    Article  PubMed  CAS  Google Scholar 

  53. Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P et al (2006) A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther 319:1376–1385

    Article  PubMed  CAS  Google Scholar 

  54. Labasi JM, Petrushova N, Donovan C, McCurdy S, Lira P, Payette MM, Brissette W, Wicks JR, Audoly L, Gabel CA (2002) Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J Immunol 168:6436–6445

    PubMed  CAS  Google Scholar 

  55. McInnes IB, Snell NJ, Perrett JH, Parmar H, Wang MM, Astbury C. Results of a phase II clinical trial of a novel P2X7 receptor antagonist, AZD9056, in patients with active rheumatoid arthritis (CREATE study). Paper presented at ACR/ARHP Scientific Meeting, Boston, MA, 6–11 November 2007

    Google Scholar 

  56. Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA (2001) Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem 276:125–132

    Article  PubMed  CAS  Google Scholar 

  57. Sanz JM, Chiozzi P, Ferrari D, Colaianna M, Idzko M, Falzoni S, Fellin R, Trabace L, Di Virgilio F (2009) Activation of microglia by amyloid beta requires P2X7 receptor expression. J Immunol 182:4378–4385

    Article  PubMed  CAS  Google Scholar 

  58. Klapperstück M, Büttner C, Schmalzing G, Markwardt F (2001) Functional evidence of distinct ATP activation sites at the human P2X(7) receptor. J Physiol 534:25–35

    Article  PubMed  Google Scholar 

  59. Gonnord P, Delarasse C, Auger R, Benihoud K, Prigent M, Cuif MH, Lamaze C, Kanellopoulos JM (2008) Palmitoylation of the P2X7 receptor, an ATP-gated channel, controls its expression and association with lipid rafts. FASEB J 23:795–805

    Article  PubMed  Google Scholar 

  60. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309

    Article  PubMed  CAS  Google Scholar 

  61. Kumar V, Sharma A (2009) Adenosine: an endogenous modulator of innate immune system with therapeutic potential. Eur J Pharmacol 616:7–15

    Article  PubMed  CAS  Google Scholar 

  62. Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28:2114–2127

    Article  PubMed  CAS  Google Scholar 

  63. Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH, van de Veerdonk FL, Ferwerda G, Heinhuis B, Devesa I et al (2008) Differential requirement for the activation of the inflammasome for processing and release of IL-1{beta} in monocytes and macrophages. Blood 113:2324–2335

    Article  PubMed  Google Scholar 

  64. Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC et al (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA 106:20388–20393

    Article  PubMed  CAS  Google Scholar 

  65. Pacifici R, Carano A, Santoro SA, Rifas L, Jeffrey JJ, Malone JD, McCracken R, Avioli LV (1991) Bone matrix constituents stimulate interleukin-1 release from human blood mononuclear cells. J Clin Invest 87:221–228

    Article  PubMed  CAS  Google Scholar 

  66. Chao W (2009) Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. Am J Physiol Heart Circ Physiol 296:H1–H12

    Article  PubMed  CAS  Google Scholar 

  67. Shi Y, Evans JE, Rock K (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    Article  PubMed  CAS  Google Scholar 

  68. Selkoe DJ (1994) Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 10:373–403

    Article  PubMed  CAS  Google Scholar 

  69. Breitner JC, Welsh KA, Helms MJ, Gaskell PC, Gau BA, Roses AD, Pericak-Vance MA, Saunders AM (1995) Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging 16:523–530

    Article  PubMed  CAS  Google Scholar 

  70. Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202:17–20

    Article  PubMed  CAS  Google Scholar 

  71. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49:489–502

    Article  PubMed  CAS  Google Scholar 

  72. Akama KT, Van Eldik LJ (2000) Beta-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1beta- and tumor necrosis factor-alpha (TNFalpha)-dependent, and involves a TNFalpha receptor-associated factor- and NFkappaB-inducing kinase-dependent signaling mechanism. J Biol Chem 275:7918–7924

    Article  PubMed  CAS  Google Scholar 

  73. Rampe D, Wang L, Ringheim GE (2004) P2X7 receptor modulation of beta-amyloid- and LPS-induced cytokine secretion from human macrophages and microglia. J Neuroimmunol 147:56–61

    Article  PubMed  CAS  Google Scholar 

  74. Yazdi AS, Ghoreschi K, Röcken M (2007) Inflammasome activation in delayed-type hypersensitivity reactions. J Investig Dermatol 127:1853–1855

    Article  PubMed  CAS  Google Scholar 

  75. Brough D, Le Feuvre RA, Wheeler RD, Solovyova N, Hilfiker S, Rothwell N, Verkhratsky A (2003) Ca2+ stores and Ca2+ entry differentially contribute to the release of IL-1 beta and IL-1 alpha from murine macrophages. J Immunol 170:3029–3036

    PubMed  CAS  Google Scholar 

  76. Vilaysane A, Muruve D (2009) The innate immune response to DNA. Semin Immunol 21:208–214

    Article  PubMed  CAS  Google Scholar 

  77. Decker P, Singh-Jasuja H, Haager S, Kötter I, Rammensee HG (2005) Nucleosome, the main autoantigen in systemic lupus erythematosus, induces direct dendritic cell activation via a MyD88-independent pathway: consequences on inflammation. J Immunol 174:3326–3334

    PubMed  CAS  Google Scholar 

  78. Bürckstümmer T, Baumann C, Blüml S, Dixit E, Dürnberger G, Jahn H, Planyavsky M, Bilban M, Colinge J, Bennett KL et al (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10:266–272

    Article  PubMed  Google Scholar 

  79. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513

    Article  PubMed  CAS  Google Scholar 

  80. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518

    Article  PubMed  CAS  Google Scholar 

  81. Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL et al (2009) HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323:1057–1060

    Article  PubMed  CAS  Google Scholar 

  82. Perregaux DG, Barberia J, Lanzetti AJ, Geoghegan KF, Carty TJ, Gabel CA (1992) IL-1 beta maturation: evidence that mature cytokine formation can be induced specifically by nigericin. J Immunol 149:1294–1303

    PubMed  CAS  Google Scholar 

  83. Perregaux DG, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269:15195–15203

    PubMed  CAS  Google Scholar 

  84. Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589

    Article  PubMed  Google Scholar 

  85. Bryant C, Fitzgerald KA (2009) Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 19:455–464

    Article  PubMed  CAS  Google Scholar 

  86. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11(2):136–140

    Article  PubMed  CAS  Google Scholar 

  87. Andersson B, Janson V, Behnam-Motlagh P, Henriksson R, Grankvist K (2006) Induction of apoptosis by intracellular potassium ion depletion: using the fluorescent dye PBFI in a 96-well plate method in cultured lung cancer cells. Toxicol In Vitro 20:986–994

    Article  PubMed  CAS  Google Scholar 

  88. Li J, Meyer R, Duncan RL, Turner CH (2009) P2X7 nucleotide receptor plays an important role in callus remodeling during fracture repair. Calcif Tissue Int 84:405–412

    Article  PubMed  CAS  Google Scholar 

  89. Goldbach-Mansky R, Dailey NJ, Canna SW, Gelabert A, Jones J, Rubin BI, Kim HJ, Brewer C, Zalewski C, Wiggs E et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 355:581–592

    Article  PubMed  CAS  Google Scholar 

  90. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526

    Article  PubMed  CAS  Google Scholar 

  91. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL et al (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396

    Article  PubMed  CAS  Google Scholar 

  92. Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ (2001) Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci 21:5528–5534

    PubMed  CAS  Google Scholar 

  93. Emsley HC, Smith CJ, Georgiou RF, Vail A, Hopkins SJ, Rothwell NJ, Tyrrell PJ, Investigators AS (2005) A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J Neurol Neurosurg Psychiatr 76:1366–1372

    Article  PubMed  CAS  Google Scholar 

  94. Honore P, Donnelly-Roberts D, Namovic M, Zhong C, Wade C, Chandran P, Zhu C, Carroll W, Perez-Medrano A, Iwakura Y et al (2009) The antihyperalgesic activity of a selective P2X7 receptor antagonist, A-839977, is lost in IL-1alphabeta knockout mice. Behav Brain Res 204(1):77–81

    Article  PubMed  CAS  Google Scholar 

  95. Gonçalves R, Gabrich L, Rosário A, Takiya C, Ferreira M, Chiarini L, Persechini P, Coutinho-Silva R, Leite M (2006) The role of purinergic P2X7 receptors in the inflammation and fibrosis of unilateral ureteral obstruction in mice. Kidney Int 70:1599–1606

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I thank members of my lab Alberto Baroja-Mazo and Carlos M. Martinez for comments and discussions, David Brough for critically reviewing the manuscript and Sebastien Roger for helpful discussion. Work in Pelegrín’s lab is supported by instituto de salud carlos iii (grants EMER07/049 and PS09/00120), Fundación Séneca (grant 11922/PI/09) and British Council through Alliance program (grant 09.027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Pelegrín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Pelegrín, P. (2011). Inflammasome Activation by Danger Signals. In: Couillin, I., Pétrilli, V., Martinon, F. (eds) The Inflammasomes. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0148-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0148-5_7

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0147-8

  • Online ISBN: 978-3-0348-0148-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics