Skip to main content

Electrogastrography, Breath Tests, Ultrasonography, Transit Tests, Wireless Motility Capsule, and Cine-MRI

  • Chapter
  • First Online:
Pediatric Neurogastroenterology

Abstract

Electrogastrography is a noninvasive test used to evaluate the myoelectrical activity of the stomach. It does not involve radiation and is not operator dependent but has a main drawback that it can be affected by motion artifact. The current methodologies for electrogastrography are not well standardized. It is considered as an adjunct test in the evaluation of children with gastrointestinal functional and motility disorders rather than a substitute for transit (scintigraphy) or motility (antroduodenal manometry) studies. Breath test and transit studies with radiopaque markers are an attractive, noninvasive, inexpensive, and office based alternative methods to conventional studies that measure gastric, intestinal, colonic, and whole gut transit (WGT). However, they have poor reproducibility in several clinical settings and possess multiple nonstandardized methodologies. Ultrasonography (US), another noninvasive operator-dependent alternative method, can be used to evaluate gastric emptying of liquids, though it is significantly affected by some technicalities like obesity and the presence of air. The wireless motility capsule (WMC, SMartPill™) is a novel device that allows the simultaneous measurement of contractility and transit time of the whole gastrointestinal tract (GIT). Nonetheless it has limitations including cost, required expertise and more pediatric studies are needed. Cine-magnetic resonance imaging is an evolving method that allows measurement of luminal volumes, motility, and transit of the gastrointestinal tract, all in one session, without the need of ionizing radiation or invasive interventions utilized in manometry. Most of the literature encompasses studies in adults, both in health and disease, therefore making it an exciting novel technique that may create new opportunities for research, clinical diagnosis, treatment follow-up and drug development in pediatrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hamilton JW, et al. Human electrogastrograms. Comparison of surface and mucosal recordings. Dig Dis Sci. 1986;31(1):33–9.

    CAS  PubMed  Google Scholar 

  2. Mintchev MP, Kingma YJ, Bowes KL. Accuracy of cutaneous recordings of gastric electrical activity. Gastroenterology. 1993;104(5):1273–80.

    CAS  PubMed  Google Scholar 

  3. Chen JD, Schirmer BD, McCallum RW. Serosal and cutaneous recordings of gastric myoelectrical activity in patients with gastroparesis. Am J Physiol. 1994;266(1 Pt 1):G90–8.

    CAS  PubMed  Google Scholar 

  4. Alvarez W. The electrogastrogram and what it shows. JAMA. 1922;78:1116–9.

    Google Scholar 

  5. Disenbaeva LG, Khorunzhii GB. Motor function of the stomach in healthy children, 3–15 years of age, according to electrogastrography. Pediatriia. 1976;3:21–4.

    Google Scholar 

  6. Mirutko DD. Electrogastrography in chronic gastroduodenitis in children. Pediatriia. 1989;7:110.

    Google Scholar 

  7. Chen JD, et al. Patterns of gastric myoelectrical activity in human subjects of different ages. Am J Physiol. 1997;272(5 Pt 1):G1022–7.

    CAS  PubMed  Google Scholar 

  8. Patterson M, Rintala R, Lloyd DA. A longitudinal study of electrogastrography in normal neonates. J Pediatr Surg. 2000;35(1):59–61.

    CAS  PubMed  Google Scholar 

  9. Precioso AR, Pereira GR, Vaz FA. Gastric myoelectrical activity in neonates of different gestational ages by means of electrogastrography. Rev Hosp Clin Fac Med Sao Paulo. 2003;58(2):81–90.

    PubMed  Google Scholar 

  10. Cheng W, Tam PK. Gastric electrical activity normalises in the first decade of life. Eur J Pediatr Surg. 2000;10(5):295–9.

    CAS  PubMed  Google Scholar 

  11. Riezzo G, Chiloiro M, Guerra V. Electrogastrography in healthy children: evaluation of normal values, influence of age, gender, and obesity. Dig Dis Sci. 1998;43(8):1646–51.

    CAS  PubMed  Google Scholar 

  12. Levy J, et al. Electrogastrographic norms in children: toward the development of standard methods, reproducible results, and reliable normative data. J Pediatr Gastroenterol Nutr. 2001;33(4):455–61.

    CAS  PubMed  Google Scholar 

  13. Safder S, et al. Gastric electrical activity becomes abnormal in the upright position in patients with postural tachycardia syndrome. J Pediatr Gastroenterol Nutr. 2010;51(3):314–8.

    PubMed  Google Scholar 

  14. Friesen CA, et al. An evaluation of adult electrogastrography criteria in healthy children. Dig Dis Sci. 2006;51(10):1824–8.

    PubMed  Google Scholar 

  15. Riezzo G, et al. Gastric electrical activity in normal neonates during the first year of life: effect of feeding with breast milk and formula. J Gastroenterol. 2003;38(9):836–43.

    PubMed  Google Scholar 

  16. Friesen CA, et al. Autonomic nervous system response to a solid meal and water loading in healthy children: its relation to gastric myoelectrical activity. Neurogastroenterol Motil. 2007;19(5):376–82.

    CAS  PubMed  Google Scholar 

  17. Barbar M, et al. Electrogastrography versus gastric emptying scintigraphy in children with symptoms suggestive of gastric motility disorders. J Pediatr Gastroenterol Nutr. 2000;30(2):193–7.

    CAS  PubMed  Google Scholar 

  18. Geldof H, van der Schee EJ, Grashuis JL. Electrogastrographic characteristics of interdigestive migrating complex in humans. Am J Phys. 1986;250(2 Pt 1):G165–71.

    CAS  Google Scholar 

  19. Di Lorenzo C, et al. Is electrogastrography a substitute for manometric studies in children with functional gastrointestinal disorders? Dig Dis Sci. 1997;42(11):2310–6.

    PubMed  Google Scholar 

  20. Pfaffenbach B, et al. The significance of electrogastrographically determined amplitudes—is there a correlation to sonographically measured antral mechanical contractions? Z Gastroenterol. 1995;33(2):103–7.

    CAS  PubMed  Google Scholar 

  21. Uscinowicz M, Jarocka-Cyrta E, Kaczmarski M. Electrogastrography in children with functional abdominal pain and gastritis. Pol Merkur Lekarski. 2005;18(103):54–7.

    PubMed  Google Scholar 

  22. Friesen CA, et al. Electrogastrography in pediatric functional dyspepsia: relationship to gastric emptying and symptom severity. J Pediatr Gastroenterol Nutr. 2006;42(3):265–9.

    PubMed  Google Scholar 

  23. Devanarayana NM, de Silva DG, de Silva HJ. Gastric myoelectrical and motor abnormalities in children and adolescents with functional recurrent abdominal pain. J Gastroenterol Hepatol. 2008;23(11):1672–7.

    PubMed  Google Scholar 

  24. Cucchiara S, et al. Electrogastrography in non-ulcer dyspepsia. Arch Dis Child. 1992;67(5):613–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Friesen CA, et al. Chronic gastritis is not associated with gastric dysrhythmia or delayed solid emptying in children with dyspepsia. Dig Dis Sci. 2005;50(6):1012–8.

    PubMed  Google Scholar 

  26. Varghese C, et al. Clinical associations of functional dyspepsia with gastric dysrhythmia on electrogastrography: a comprehensive systematic review and meta-analysis. Neurogastroenterol Motil. 2021;2021:e14151.

    Google Scholar 

  27. Bhat S, et al. Electrogastrography abnormalities in pediatric gastroduodenal disorders: a systematic review and meta-analysis. J Pediatr Gastroenterol Nutr. 2021;73(1):9–16.

    CAS  PubMed  Google Scholar 

  28. Cucchiara S, et al. Gastric electrical dysrhythmias and delayed gastric emptying in gastroesophageal reflux disease. Am J Gastroenterol. 1997;92(7):1103–8.

    CAS  PubMed  Google Scholar 

  29. Devane SP, et al. Gastric antral dysrhythmias in children with chronic idiopathic intestinal pseudoobstruction. Gut. 1992;33(11):1477–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bracci F, et al. Role of electrogastrography in detecting motility disorders in children affected by chronic intestinal pseudo-obstruction and Crohn’s disease. Eur J Pediatr Surg. 2003;13(1):31–4.

    CAS  PubMed  Google Scholar 

  31. Diamanti A, et al. Gastric electric activity assessed by electrogastrography and gastric emptying scintigraphy in adolescents with eating disorders. J Pediatr Gastroenterol Nutr. 2003;37(1):35–41.

    CAS  PubMed  Google Scholar 

  32. Ogawa A, et al. Electrogastrography abnormality in eating disorders. Psychiatry Clin Neurosci. 2004;58(3):300–10.

    PubMed  Google Scholar 

  33. Ravelli AM, et al. Normal gastric antral myoelectrical activity in early onset anorexia nervosa. Arch Dis Child. 1993;69(3):342–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Franzese A, et al. Domperidone is more effective than cisapride in children with diabetic gastroparesis. Aliment Pharmacol Ther. 2002;16(5):951–7.

    CAS  PubMed  Google Scholar 

  35. Riezzo G, et al. Gastric emptying and myoelectrical activity in children with nonulcer dyspepsia. Effect of cisapride. Dig Dis Sci. 1995;40(7):1428–34.

    CAS  PubMed  Google Scholar 

  36. Faure C, Wolff VP, Navarro J. Effect of meal and intravenous erythromycin on manometric and electrogastrographic measurements of gastric motor and electrical activity. Dig Dis Sci. 2000;45(3):525–8.

    CAS  PubMed  Google Scholar 

  37. Cheng W, Chow B, Tam PK. Electrogastrographic changes in children who undergo day-surgery anesthesia. J Pediatr Surg. 1999;34(9):1336–8.

    CAS  PubMed  Google Scholar 

  38. Cheng W, Chan GC, Tam PK. Cytotoxic chemotherapy has minimal direct effect on gastric myoelectric activity in children with 5HT(3) antagonist prophylaxis. Med Pediatr Oncol. 2000;34(6):421–3.

    CAS  PubMed  Google Scholar 

  39. DiBaise JK, et al. Gastric myoelectrical activity and its relationship to the development of nausea and vomiting after intensive chemotherapy and autologous stem cell transplantation. Am J Gastroenterol. 2001;96(10):2873–81.

    CAS  PubMed  Google Scholar 

  40. Richards CA, et al. Nissen fundoplication may induce gastric myoelectrical disturbance in children. J Pediatr Surg. 1998;33(12):1801–5.

    CAS  PubMed  Google Scholar 

  41. Jalanko T, et al. Effects of surgical correction of neuromuscular scoliosis on gastric myoelectrical activity, emptying, and upper gastrointestinal symptoms. J Pediatr Gastroenterol Nutr. 2014;58(1):38–45.

    PubMed  Google Scholar 

  42. Lee JS, et al. A valid, accurate, office based non-radioactive test for gastric emptying of solids. Gut. 2000;46(6):768–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Viramontes BE, et al. Validation of a stable isotope gastric emptying test for normal, accelerated or delayed gastric emptying. Neurogastroenterol Motil. 2001;13(6):567–74.

    CAS  PubMed  Google Scholar 

  44. Szarka LA, et al. A stable isotope breath test with a standard meal for abnormal gastric emptying of solids in the clinic and in research. Clin Gastroenterol Hepatol. 2008;6(6):635–643.e1.

    PubMed  PubMed Central  Google Scholar 

  45. Clegg M, Shafat A. Gastric emptying and orocaecal transit time of meals containing lactulose or inulin in men. Br J Nutr. 2010;104(4):554–9.

    CAS  PubMed  Google Scholar 

  46. Geboes KP, et al. Inulin is an ideal substrate for a hydrogen breath test to measure the orocaecal transit time. Aliment Pharmacol Ther. 2003;18(7):721–9.

    CAS  PubMed  Google Scholar 

  47. Schadewaldt P, et al. Application of isotope-selective nondispersive infrared spectrometry (IRIS) for evaluation of [13C]octanoic acid gastric-emptying breath tests: comparison with isotope ratio-mass spectrometry (IRMS). Clin Chem. 1997;43(3):518–22.

    CAS  PubMed  Google Scholar 

  48. Braden B, Caspary WF, Lembcke B. Nondispersive infrared spectrometry for 13CO2/12CO2-measurements: a clinically feasible analyzer for stable isotope breath tests in gastroenterology. Z Gastroenterol. 1999;37(6):477–81.

    CAS  PubMed  Google Scholar 

  49. Korth H, et al. Breath hydrogen as a test for gastrointestinal transit. Hepatogastroenterology. 1984;31(6):282–4.

    CAS  PubMed  Google Scholar 

  50. Choi MG, et al. [13C]octanoic acid breath test for gastric emptying of solids: accuracy, reproducibility, and comparison with scintigraphy. Gastroenterology. 1997;112(4):1155–62.

    CAS  PubMed  Google Scholar 

  51. Peracchi M, et al. Influence of caloric intake on gastric emptying of solids assessed by 13C-octanoic acid breath test. Scand J Gastroenterol. 2000;35(8):814–8.

    CAS  PubMed  Google Scholar 

  52. Deane AM, et al. Intrasubject variability of gastric emptying in the critically ill using a stable isotope breath test. Clin Nutr. 2010;29(5):682–6.

    PubMed  Google Scholar 

  53. Veereman-Wauters G, et al. The 13C-octanoic acid breath test: a noninvasive technique to assess gastric emptying in preterm infants. J Pediatr Gastroenterol Nutr. 1996;23(2):111–7.

    CAS  PubMed  Google Scholar 

  54. Barnett C, et al. Reproducibility of the 13C-octanoic acid breath test for assessment of gastric emptying in healthy preterm infants. J Pediatr Gastroenterol Nutr. 1999;29(1):26–30.

    CAS  PubMed  Google Scholar 

  55. Pozler O, et al. Development of gastric emptying in premature infants. Use of the (13)C-octanoic acid breath test. Nutrition. 2003;19(7–8):593–6.

    PubMed  Google Scholar 

  56. Van Den Driessche M, et al. Gastric emptying in formula-fed and breast-fed infants measured with the 13C-octanoic acid breath test. J Pediatr Gastroenterol Nutr. 1999;29(1):46–51.

    PubMed  Google Scholar 

  57. Hauser B, et al. Variability of the 13C-acetate breath test for gastric emptying of liquids in healthy children. J Pediatr Gastroenterol Nutr. 2006;42(4):392–7.

    CAS  PubMed  Google Scholar 

  58. Hauser B, et al. Variability of the 13C-octanoic acid breath test for gastric emptying of solids in healthy children. Aliment Pharmacol Ther. 2006;23(9):1315–9.

    CAS  PubMed  Google Scholar 

  59. Murphy MS, Nelson R, Eastham EJ. Measurement of small intestinal transit time in children. Acta Paediatr Scand. 1988;77(6):802–6.

    CAS  PubMed  Google Scholar 

  60. Ramirez A, Wong WW, Shulman RJ. Factors regulating gastric emptying in preterm infants. J Pediatr. 2006;149(4):475–9.

    PubMed  Google Scholar 

  61. Staelens S, et al. Gastric emptying in healthy newborns fed an intact protein formula, a partially and an extensively hydrolysed formula. Clin Nutr. 2008;27(2):264–8.

    CAS  PubMed  Google Scholar 

  62. Omari TI, et al. Is the correction factor used in the breath test assessment of gastric emptying appropriate for use in infants? J Pediatr Gastroenterol Nutr. 2005;41(3):332–4.

    PubMed  Google Scholar 

  63. Sanaka M, et al. The Wagner-Nelson method makes the [13C]-breath test comparable to radioscintigraphy in measuring gastric emptying of a solid/liquid mixed meal in humans. Clin Exp Pharmacol Physiol. 2007;34(7):641–4.

    CAS  PubMed  Google Scholar 

  64. Braden B, et al. The [13C]acetate breath test accurately reflects gastric emptying of liquids in both liquid and semisolid test meals. Gastroenterology. 1995;108(4):1048–55.

    CAS  PubMed  Google Scholar 

  65. Choi MG, et al. Reproducibility and simplification of 13C-octanoic acid breath test for gastric emptying of solids. Am J Gastroenterol. 1998;93(1):92–8.

    CAS  PubMed  Google Scholar 

  66. Hellmig S, et al. Gastric emptying time of fluids and solids in healthy subjects determined by 13C breath tests: influence of age, sex and body mass index. J Gastroenterol Hepatol. 2006;21(12):1832–8.

    PubMed  Google Scholar 

  67. Keller J, et al. Influence of clinical parameters on the results of 13C-octanoic acid breath tests: examination of different mathematical models in a large patient cohort. Neurogastroenterol Motil. 2009;21(10):1039–e83.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hauser B, et al. Gastric emptying of liquids in children. J Pediatr Gastroenterol Nutr. 2016;62(3):403–8.

    PubMed  Google Scholar 

  69. Punkkinen J, et al. Measuring gastric emptying: comparison of 13C-octanoic acid breath test and scintigraphy. Dig Dis Sci. 2006;51(2):262–7.

    PubMed  Google Scholar 

  70. Delbende B, et al. 13C-octanoic acid breath test for gastric emptying measurement. Eur J Gastroenterol Hepatol. 2000;12(1):85–91.

    CAS  PubMed  Google Scholar 

  71. Gatti C, et al. Is the 13C-acetate breath test a valid procedure to analyse gastric emptying in children? J Pediatr Surg. 2000;35(1):62–5.

    CAS  PubMed  Google Scholar 

  72. Braden B, et al. Measuring gastric emptying of semisolids in children using the 13C-acetate breath test: a validation study. Dig Liver Dis. 2004;36(4):260–4.

    CAS  PubMed  Google Scholar 

  73. Okada T, et al. Delay of gastric emptying measured by 13C-acetate breath test in neurologically impaired children with gastroesophageal reflux. Eur J Pediatr Surg. 2005;15(2):77–81.

    CAS  PubMed  Google Scholar 

  74. Ritz MA, et al. Delayed gastric emptying in ventilated critically ill patients: measurement by 13C-octanoic acid breath test. Crit Care Med. 2001;29(9):1744–9.

    CAS  PubMed  Google Scholar 

  75. Lee JS, et al. Toward office-based measurement of gastric emptying in symptomatic diabetics using [13C]octanoic acid breath test. Am J Gastroenterol. 2000;95(10):2751–61.

    CAS  PubMed  Google Scholar 

  76. Vreugdenhil G, Sinaasappel M, Bouquet J. A comparative study of the mouth to caecum transit time in children and adults using a weight adapted lactulose dose. Acta Paediatr Scand. 1986;75(3):483–8.

    CAS  PubMed  Google Scholar 

  77. Van Den Driessche M, et al. Lactose-[13C]ureide breath test: a new, noninvasive technique to determine orocecal transit time in children. J Pediatr Gastroenterol Nutr. 2000;31(4):433–8.

    PubMed  Google Scholar 

  78. La Brooy SJ, et al. Assessment of the reproducibility of the lactulose H2 breath test as a measure of mouth to caecum transit time. Gut. 1983;24(10):893–6.

    PubMed  PubMed Central  Google Scholar 

  79. Hirakawa M, et al. Small bowel transit time measured by hydrogen breath test in patients with anorexia nervosa. Dig Dis Sci. 1990;35(6):733–6.

    CAS  PubMed  Google Scholar 

  80. Brown BP, et al. The configuration of the human gastroduodenal junction in the separate emptying of liquids and solids. Gastroenterology. 1993;105(2):433–40.

    CAS  PubMed  Google Scholar 

  81. Berstad A, et al. Volume measurements of gastric antrum by 3-D ultrasonography and flow measurements through the pylorus by duplex technique. Dig Dis Sci. 1994;39(12 Suppl):97S–100S.

    CAS  PubMed  Google Scholar 

  82. Hveem K, et al. Relationship between ultrasonically detected phasic antral contractions and antral pressure. Am J Physiol Gastrointest Liver Physiol. 2001;281(1):G95–101.

    CAS  PubMed  Google Scholar 

  83. Hausken T, et al. Quantification of gastric emptying and duodenogastric reflux stroke volumes using three-dimensional guided digital color Doppler imaging. Eur J Ultrasound. 2001;13(3):205–13.

    CAS  PubMed  Google Scholar 

  84. Fujimura J, et al. Quantitation of duodenogastric reflux and antral motility by color Doppler ultrasonography. Study in healthy volunteers and patients with gastric ulcer. Scand J Gastroenterol. 1994;29(10):897–902.

    CAS  PubMed  Google Scholar 

  85. Gerards C, Tromm A, May B. Optimizing antrum planimetry for ultrasound determination of gastric emptying using emptying function reference lines. Ultraschall Med. 1998;19(2):83–6.

    CAS  PubMed  Google Scholar 

  86. Ahluwalia NK, et al. Evaluation of human postprandial antral motor function using ultrasound. Am J Physiol. 1994;266(3 Pt 1):G517–22.

    CAS  PubMed  Google Scholar 

  87. Irvine EJ, et al. Reliability and interobserver variability of ultrasonographic measurement of gastric emptying rate. Dig Dis Sci. 1993;38(5):803–10.

    CAS  PubMed  Google Scholar 

  88. Ricci R, et al. Real time ultrasonography of the gastric antrum. Gut. 1993;34(2):173–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gentilcore D, et al. Measurements of gastric emptying of low- and high-nutrient liquids using 3D ultrasonography and scintigraphy in healthy subjects. Neurogastroenterol Motil. 2006;18(12):1062–8.

    CAS  PubMed  Google Scholar 

  90. Sase M, et al. Ontogeny of gastric emptying patterns in the human fetus. J Matern Fetal Neonatal Med. 2005;17(3):213–7.

    PubMed  Google Scholar 

  91. Sase M, et al. Development of gastric emptying in the human fetus. Ultrasound Obstet Gynecol. 2000;16(1):56–9.

    CAS  PubMed  Google Scholar 

  92. Devane SP, Soothill PW, Candy DC. Temporal changes in gastric volume in the human fetus in late pregnancy. Early Hum Dev. 1993;33(2):109–16.

    CAS  PubMed  Google Scholar 

  93. Sase M, et al. Gastric emptying cycles in the human fetus. Am J Obstet Gynecol. 2005;193(3 Pt 2):1000–4.

    PubMed  Google Scholar 

  94. Carlos MA, et al. Changes in gastric emptying in early postnatal life. J Pediatr. 1997;130(6):931–7.

    CAS  PubMed  Google Scholar 

  95. Bolondi L, et al. Measurement of gastric emptying time by real-time ultrasonography. Gastroenterology. 1985;89(4):752–9.

    CAS  PubMed  Google Scholar 

  96. Holt S, et al. Measurement of gastric emptying rate in humans by real-time ultrasound. Gastroenterology. 1986;90(4):918–23.

    CAS  PubMed  Google Scholar 

  97. Marzio L, et al. Evaluation of the use of ultrasonography in the study of liquid gastric emptying. Am J Gastroenterol. 1989;84(5):496–500.

    CAS  PubMed  Google Scholar 

  98. Marzio L, et al. Influence of physical activity on gastric emptying of liquids in normal human subjects. Am J Gastroenterol. 1991;86(10):1433–6.

    CAS  PubMed  Google Scholar 

  99. Tympner F, Feldmeier J, Rosch W. Study of the correlation of sonographic and scintigraphic results in measuring stomach emptying. Ultraschall Med. 1986;7(6):264–7.

    CAS  PubMed  Google Scholar 

  100. Gomes H, Hornoy P, Liehn JC. Ultrasonography and gastric emptying in children: validation of a sonographic method and determination of physiological and pathological patterns. Pediatr Radiol. 2003;33(8):522–9.

    PubMed  Google Scholar 

  101. Sethi AK, et al. Safe pre-operative fasting times after milk or clear fluid in children. A preliminary study using real-time ultrasound. Anaesthesia. 1999;54(1):51–9.

    CAS  PubMed  Google Scholar 

  102. Perlas A, et al. Ultrasound assessment of gastric content and volume. Anesthesiology. 2009;111(1):82–9.

    PubMed  Google Scholar 

  103. Spahn TW, et al. Assessment of pre-gastroscopy fasting period using ultrasonography. Dig Dis Sci. 2009;54(3):621–6.

    PubMed  Google Scholar 

  104. Newell SJ, Chapman S, Booth IW. Ultrasonic assessment of gastric emptying in the preterm infant. Arch Dis Child. 1993;69(1 Spec No):32–6.

    Google Scholar 

  105. Gounaris A, et al. Gastric emptying in very-low-birth-weight infants treated with nasal continuous positive airway pressure. J Pediatr. 2004;145(4):508–10.

    PubMed  Google Scholar 

  106. Glasbrenner B, et al. Simultaneous sonographic study of postprandial gastric emptying and gallbladder contraction. Bildgebung. 1992;59(2):88–93.

    CAS  PubMed  Google Scholar 

  107. Bateman DN, Gooptu D, Whittingham TA. The effects of domperidone on gastric emptying of liquid in man. Br J Clin Pharmacol. 1982;13(5):675–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Duan LP, Zheng ZT, Li YN. A study of gastric emptying in non-ulcer dyspepsia using a new ultrasonographic method. Scand J Gastroenterol. 1993;28(4):355–60.

    CAS  PubMed  Google Scholar 

  109. Gounaris A, et al. Gastric emptying of preterm neonates receiving domperidone. Neonatology. 2010;97(1):56–60.

    CAS  PubMed  Google Scholar 

  110. Tympner F, Rosch W. Ultrasound measurement of gastric emptying time values. Ultraschall Med. 1982;3(1):15–7.

    PubMed  Google Scholar 

  111. Carroccio A, et al. Gastric emptying in infants with gastroesophageal reflux. Ultrasound evaluation before and after cisapride administration. Scand J Gastroenterol. 1992;27(9):799–804.

    CAS  PubMed  Google Scholar 

  112. Kusunoki H, et al. Real-time ultrasonographic assessment of antroduodenal motility after ingestion of solid and liquid meals by patients with functional dyspepsia. J Gastroenterol Hepatol. 2000;15(9):1022–7.

    CAS  PubMed  Google Scholar 

  113. Costalos C, et al. Erythromycin as a prokinetic agent in preterm infants. J Pediatr Gastroenterol Nutr. 2002;34(1):23–5.

    CAS  PubMed  Google Scholar 

  114. Gilja OH, et al. Monitoring postprandial size of the proximal stomach by ultrasonography. J Ultrasound Med. 1995;14(2):81–9.

    CAS  PubMed  Google Scholar 

  115. Gilja OH, et al. Impaired accommodation of proximal stomach to a meal in functional dyspepsia. Dig Dis Sci. 1996;41(4):689–96.

    CAS  PubMed  Google Scholar 

  116. Olafsdottir E, et al. Impaired accommodation of the proximal stomach in children with recurrent abdominal pain. J Pediatr Gastroenterol Nutr. 2000;30(2):157–63.

    CAS  PubMed  Google Scholar 

  117. Kusunoki H, et al. Efficacy of mosapride citrate in proximal gastric accommodation and gastrointestinal motility in healthy volunteers: a double-blind placebo-controlled ultrasonographic study. J Gastroenterol. 2010;45(12):1228–34.

    CAS  PubMed  Google Scholar 

  118. Sekino Y, et al. Influence of sumatriptan on gastric accommodation and on antral contraction in healthy subjects assessed by ultrasonography. Neurogastroenterol Motil. 2012;24(12):1083–e564.

    CAS  PubMed  Google Scholar 

  119. King PM, et al. Relationships of human antroduodenal motility and transpyloric fluid movement: non-invasive observations with real-time ultrasound. Gut. 1984;25(12):1384–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. King PM, Pryde A, Heading RC. Transpyloric fluid movement and antroduodenal motility in patients with gastro-oesophageal reflux. Gut. 1987;28(5):545–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hiyama T, et al. Treatment of functional dyspepsia with serotonin agonists: a meta-analysis of randomized controlled trials. J Gastroenterol Hepatol. 2007;22(10):1566–70.

    PubMed  Google Scholar 

  122. Paintaud G, et al. Intraindividual variability of paracetamol absorption kinetics after a semi-solid meal in healthy volunteers. Eur J Clin Pharmacol. 1998;53(5):355–9.

    CAS  PubMed  Google Scholar 

  123. Koizumi F, et al. Plasma paracetamol concentrations measured by fluorescence polarization immunoassay and gastric emptying time. Tohoku J Exp Med. 1988;155(2):159–64.

    CAS  PubMed  Google Scholar 

  124. Maddern G, et al. Liquid gastric emptying assessed by direct and indirect techniques: radionuclide labelled liquid emptying compared with a simple paracetamol marker method. Aust N Z J Surg. 1985;55(2):203–6.

    CAS  PubMed  Google Scholar 

  125. Naslund E, et al. Gastric emptying: comparison of scintigraphic, polyethylene glycol dilution, and paracetamol tracer assessment techniques. Scand J Gastroenterol. 2000;35(4):375–9.

    CAS  PubMed  Google Scholar 

  126. Willems M, Quartero AO, Numans ME. How useful is paracetamol absorption as a marker of gastric emptying? A systematic literature study. Dig Dis Sci. 2001;46(10):2256–62.

    CAS  PubMed  Google Scholar 

  127. Cohen J, Aharon A, Singer P. The paracetamol absorption test: a useful addition to the enteral nutrition algorithm? Clin Nutr. 2000;19(4):233–6.

    CAS  PubMed  Google Scholar 

  128. Medhus AW, et al. Gastric emptying: the validity of the paracetamol absorption test adjusted for individual pharmacokinetics. Neurogastroenterol Motil. 2001;13(3):179–85.

    CAS  PubMed  Google Scholar 

  129. Wong CA, et al. Gastric emptying of water in term pregnancy. Anesthesiology. 2002;96(6):1395–400.

    PubMed  Google Scholar 

  130. Sutton JA, Thompson S, Sobnack R. Measurement of gastric emptying rates by radioactive isotope scanning and epigastric impedance. Lancet. 1985;1(8434):898–900.

    CAS  PubMed  Google Scholar 

  131. Brown BH, Barber DC, Seagar AD. Applied potential tomography: possible clinical applications. Clin Phys Physiol Meas. 1985;6(2):109–21.

    CAS  PubMed  Google Scholar 

  132. Nour S, et al. Measurement of gastric emptying in infants with pyloric stenosis using applied potential tomography. Arch Dis Child. 1993;68(4):484–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Smith HL, Hollins GW, Booth IW. Epigastric impedance recording for measuring gastric emptying in children: how useful is it? J Pediatr Gastroenterol Nutr. 1993;17(2):201–6.

    CAS  PubMed  Google Scholar 

  134. Lange A, et al. Gastric emptying patterns of a liquid meal in newborn infants measured by epigastric impedance. Neurogastroenterol Motil. 1997;9(2):55–62.

    CAS  PubMed  Google Scholar 

  135. Smout AJ, et al. Role of electrogastrography and gastric impedance measurements in evaluation of gastric emptying and motility. Dig Dis Sci. 1994;39(12 Suppl):110S–3S.

    CAS  PubMed  Google Scholar 

  136. Loreno M, et al. Gastric clearance of radiopaque markers in the evaluation of gastric emptying rate. Scand J Gastroenterol. 2004;39(12):1215–8.

    CAS  PubMed  Google Scholar 

  137. Metcalf AM, et al. Simplified assessment of segmental colonic transit. Gastroenterology. 1987;92(1):40–7.

    CAS  PubMed  Google Scholar 

  138. Bautista Casasnovas A, et al. Measurement of colonic transit time in children. J Pediatr Gastroenterol Nutr. 1991;13(1):42–5.

    CAS  PubMed  Google Scholar 

  139. Zaslavsky C, da Silveira TR, Maguilnik I. Total and segmental colonic transit time with radio-opaque markers in adolescents with functional constipation. J Pediatr Gastroenterol Nutr. 1998;27(2):138–42.

    CAS  PubMed  Google Scholar 

  140. Southwell BR, et al. Colonic transit studies: normal values for adults and children with comparison of radiological and scintigraphic methods. Pediatr Surg Int. 2009;25(7):559–72.

    PubMed  Google Scholar 

  141. Arhan P, et al. Segmental colonic transit time. Dis Colon Rectum. 1981;24(8):625–9.

    CAS  PubMed  Google Scholar 

  142. Benninga MA, et al. Colonic transit time in constipated children: does pediatric slow-transit constipation exist? J Pediatr Gastroenterol Nutr. 1996;23(3):241–51.

    CAS  PubMed  Google Scholar 

  143. Papadopoulou A, Clayden GS, Booth IW. The clinical value of solid marker transit studies in childhood constipation and soiling. Eur J Pediatr. 1994;153(8):560–4.

    CAS  PubMed  Google Scholar 

  144. Benninga MA, et al. Defaecation disorders in children, colonic transit time versus the Barr-score. Eur J Pediatr. 1995;154(4):277–84.

    CAS  PubMed  Google Scholar 

  145. Rintala RJ, et al. Segmental colonic motility in patients with anorectal malformations. J Pediatr Surg. 1997;32(3):453–6.

    CAS  PubMed  Google Scholar 

  146. Staiano A, Del Giudice E. Colonic transit and anorectal manometry in children with severe brain damage. Pediatrics. 1994;94(2 Pt 1):169–73.

    CAS  PubMed  Google Scholar 

  147. Soares AC, Tahan S, Morais MB. Effects of conventional treatment of chronic functional constipation on total and segmental colonic and orocecal transit times. J Pediatr. 2009;85(4):322–8.

    Google Scholar 

  148. de Sillos MD, et al. Colonic transit time and fecal impaction in children and adolescents with cystic fibrosis-associated constipation. J Pediatr Gastroenterol Nutr. 2021;73(3):319–24.

    PubMed  Google Scholar 

  149. Zarate N, et al. Accurate localization of a fall in pH within the ileocecal region: validation using a dual-scintigraphic technique. Am J Physiol Gastrointest Liver Physiol. 2010;299(6):G1276–86.

    CAS  PubMed  Google Scholar 

  150. Cassilly D, et al. Gastric emptying of a non-digestible solid: assessment with simultaneous SmartPill pH and pressure capsule, antroduodenal manometry, gastric emptying scintigraphy. Neurogastroenterol Motil. 2008;20(4):311–9.

    CAS  PubMed  Google Scholar 

  151. Kuo B, et al. Comparison of gastric emptying of a nondigestible capsule to a radio-labelled meal in healthy and gastroparetic subjects. Aliment Pharmacol Ther. 2008;27(2):186–96.

    CAS  PubMed  Google Scholar 

  152. Michalek W, Semler JR, Kuo B. Impact of acid suppression on upper gastrointestinal pH and motility. Dig Dis Sci. 2011;56(6):1735–42.

    CAS  PubMed  Google Scholar 

  153. Boillat CS, et al. Variability associated with repeated measurements of gastrointestinal tract motility in dogs obtained by use of a wireless motility capsule system and scintigraphy. Am J Vet Res. 2010;71(8):903–8.

    PubMed  Google Scholar 

  154. Boillat CS, Gaschen FP, Hosgood GL. Assessment of the relationship between body weight and gastrointestinal transit times measured by use of a wireless motility capsule system in dogs. Am J Vet Res. 2010;71(8):898–902.

    PubMed  Google Scholar 

  155. Kloetzer L, et al. Motility of the antroduodenum in healthy and gastroparetics characterized by wireless motility capsule. Neurogastroenterol Motil. 2010;22(5):527–33, e117.

    CAS  PubMed  Google Scholar 

  156. Rao SS, et al. Diagnostic utility of wireless motility capsule in gastrointestinal dysmotility. J Clin Gastroenterol. 2011;45(8):684–90.

    PubMed  Google Scholar 

  157. Green AD, et al. Wireless motility capsule test in children with upper gastrointestinal symptoms. J Pediatr. 2013;162(6):1181–7.

    PubMed  Google Scholar 

  158. Hasler WL, et al. Heightened colon motor activity measured by a wireless capsule in patients with constipation: relation to colon transit and IBS. Am J Physiol Gastrointest Liver Physiol. 2009;297(6):G1107–14.

    CAS  PubMed  Google Scholar 

  159. Camilleri M, et al. Wireless pH-motility capsule for colonic transit: prospective comparison with radiopaque markers in chronic constipation. Neurogastroenterol Motil. 2010;22(8):874–82, e233.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Rao SS, et al. Investigation of colonic and whole-gut transit with wireless motility capsule and radiopaque markers in constipation. Clin Gastroenterol Hepatol. 2009;7(5):537–44.

    PubMed  Google Scholar 

  161. Saad RJ, et al. Do stool form and frequency correlate with whole-gut and colonic transit? Results from a multicenter study in constipated individuals and healthy controls. Am J Gastroenterol. 2010;105(2):403–11.

    PubMed  Google Scholar 

  162. Sarosiek I, et al. The assessment of regional gut transit times in healthy controls and patients with gastroparesis using wireless motility technology. Aliment Pharmacol Ther. 2010;31(2):313–22.

    CAS  PubMed  Google Scholar 

  163. Maqbool S, Parkman HP, Friedenberg FK. Wireless capsule motility: comparison of the SmartPill GI monitoring system with scintigraphy for measuring whole gut transit. Dig Dis Sci. 2009;54(10):2167–74.

    PubMed  Google Scholar 

  164. Timm D, et al. The use of a wireless motility device (SmartPill(R)) for the measurement of gastrointestinal transit time after a dietary fibre intervention. Br J Nutr. 2011;105(9):1337–42.

    CAS  PubMed  Google Scholar 

  165. Rodriguez L, et al. Diagnostic and clinical utility of the wireless motility capsule in children: a study in patients with functional gastrointestinal disorders. Neurogastroenterol Motil. 2021;33(4):e14032.

    CAS  PubMed  Google Scholar 

  166. Gelfond D, et al. Intestinal pH and gastrointestinal transit profiles in cystic fibrosis patients measured by wireless motility capsule. Dig Dis Sci. 2013;58(8):2275–81.

    CAS  PubMed  Google Scholar 

  167. Stehling MK, et al. Gastrointestinal tract: dynamic MR studies with echo-planar imaging. Radiology. 1989;171(1):41–6.

    CAS  PubMed  Google Scholar 

  168. de Jonge CS, et al. Evaluation of gastrointestinal motility with MRI: advances, challenges and opportunities. Neurogastroenterol Motil. 2018;30(1) https://doi.org/10.1111/nmo.13257.

  169. Feinle C, et al. Scintigraphic validation of a magnetic resonance imaging method to study gastric emptying of a solid meal in humans. Gut. 1999;44(1):106–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Schwizer W, Maecke H, Fried M. Measurement of gastric emptying by magnetic resonance imaging in humans. Gastroenterology. 1992;103(2):369–76.

    CAS  PubMed  Google Scholar 

  171. Schwizer W, et al. Measurement of proximal and distal gastric motility with magnetic resonance imaging. Am J Phys. 1996;271(1 Pt 1):G217–22.

    CAS  Google Scholar 

  172. Fruehauf H, et al. Intersubject and intrasubject variability of gastric volumes in response to isocaloric liquid meals in functional dyspepsia and health. Neurogastroenterol Motil. 2007;19(7):553–61.

    CAS  PubMed  Google Scholar 

  173. Heissam K, et al. Measurement of fasted state gastric antral motility before and after a standard bioavailability and bioequivalence 240 mL drink of water: validation of MRI method against concomitant perfused manometry in healthy participants. PLoS One. 2020;15(11):e0241441.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Borovicka J, et al. Evaluation of gastric emptying and motility in diabetic gastroparesis with magnetic resonance imaging: effects of cisapride. Am J Gastroenterol. 1999;94(10):2866–73.

    CAS  PubMed  Google Scholar 

  175. Menys A, et al. A magnetic resonance imaging study of gastric motor function in patients with dyspepsia associated with Ehlers-Danlos Syndrome-Hypermobility Type: a feasibility study. Neurogastroenterol Motil. 2017;29(9)

    Google Scholar 

  176. Alyami J, Spiller RC, Marciani L. Magnetic resonance imaging to evaluate gastrointestinal function. Neurogastroenterol Motil. 2015;27(12):1687–92.

    CAS  PubMed  Google Scholar 

  177. Khalaf A, et al. MRI assessment of the postprandial gastrointestinal motility and peptide response in healthy humans. Neurogastroenterol Motil. 2018;30(1)

    Google Scholar 

  178. Ohkubo H, et al. Assessment of small bowel motility in patients with chronic intestinal pseudo-obstruction using cine-MRI. Am J Gastroenterol. 2013;108(7):1130–9.

    PubMed  Google Scholar 

  179. Fuyuki A, et al. Clinical importance of cine-MRI assessment of small bowel motility in patients with chronic intestinal pseudo-obstruction: a retrospective study of 33 patients. J Gastroenterol. 2017;52(5):577–84.

    PubMed  Google Scholar 

  180. Menys A, et al. Comparative quantitative assessment of global small bowel motility using magnetic resonance imaging in chronic intestinal pseudo-obstruction and healthy controls. Neurogastroenterol Motil. 2016;28(3):376–83.

    CAS  PubMed  Google Scholar 

  181. Buhmann S, et al. Assessment of large bowel motility by cine magnetic resonance imaging using two different prokinetic agents: a feasibility study. Investig Radiol. 2005;40(11):689–94.

    CAS  Google Scholar 

  182. Marciani L, et al. Stimulation of colonic motility by oral PEG electrolyte bowel preparation assessed by MRI: comparison of split vs single dose. Neurogastroenterol Motil. 2014;26(10):1426–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Kirchhoff S, et al. Assessment of colon motility using simultaneous manometric and functional cine-MRI analysis: preliminary results. Abdom Imaging. 2011;36(1):24–30.

    PubMed  Google Scholar 

  184. Vriesman MH, et al. Simultaneous assessment of colon motility in children with functional constipation by cine-MRI and colonic manometry: a feasibility study. Eur Radiol Exp. 2021;5(1):8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonel Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arbizu, R.A., Rodriguez, L. (2022). Electrogastrography, Breath Tests, Ultrasonography, Transit Tests, Wireless Motility Capsule, and Cine-MRI. In: Faure, C., Thapar, N., Di Lorenzo, C. (eds) Pediatric Neurogastroenterology. Springer, Cham. https://doi.org/10.1007/978-3-031-15229-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15229-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15228-3

  • Online ISBN: 978-3-031-15229-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics