Skip to main content

Differences Between Physiological and Pharmacological Actions of Taurine

  • Chapter
  • First Online:
Taurine 12

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1370))

Abstract

In many experimental studies, pharmacological levels of taurine have been used to study physiological functions of taurine. However, this approach is unlikely to be fruitful, as pharmacological administration increases extracellular taurine, while physiological actions of taurine require alterations in intracellular taurine. Recognizing that different mechanisms might underlie the pharmacological and physiological actions of taurine, cardiac properties before and after exposure to various extracellular or intracellular concentrations of taurine were examined. To assess the effect of physiological taurine, myocardial contractility and metabolic status were compared in hearts containing different intracellular taurine concentrations. By contrast, the pharmacological actions of taurine were assessed in normal hearts perfused with buffer containing or lacking 10 mM taurine. Both pharmacological and physiological taurine increased contractile function and oxygen consumption. Yet, the pharmacological actions of taurine on contractile function were dependent on the L-type Ca2+ channel, while the sarcoplasmic reticular Ca2+ ATPase contributed to the physiological actions of taurine. ATP generation from available substrates, glucose, fatty acids, and acetate was increased for both the physiological and pharmacological actions of taurine. However, taurine supplementation enhanced ATP generation by elevating respiratory chain complex I activity and by stimulating metabolic flux through reductions in the NADH/NAD+ ratio, while the pharmacological actions of taurine can be traced to elevations in [Ca2+]i and the observed positive inotropic effect. Thus, the mechanisms underlying the pharmacological actions of taurine on contractile function and energy metabolism are entirely different than those contributing to the physiological actions of taurine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ca2+]i:

Intracellular calcium concentration

[Na+]i:

Intracellular sodium concentration

CrP:

Creatine phosphate

MELAS:

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes

SERCA:

Sarcoplasmic reticular Ca2+ ATPase

TauTKO:

Taurine transporter knockout

References

  • Bkaily G, Jaalouk D, Sader S, Shbaklo H, Pothier P, Jaacques D, D’Orleans P, Cragoe EJ, Bose R (1998) Taurine indirectly increases [Ca]I by inducing Ca2+ influx through the Na+ -Ca2+ exchanger. Mol Cell Biochem 188:187–197

    Article  CAS  PubMed  Google Scholar 

  • Chapman RA, Suleiman MS, Earm YE (1993) Taurine and the heart. Cardiovasc Res 27:358–363

    Article  CAS  PubMed  Google Scholar 

  • Chovan JP, Kulakowski EC, Sheakowski S, Schaffer SW (1980) Calcium regulation by the low-affinity taurine binding sites of cardiac sarcolemma. Mol Pharmacol 17:295–300

    CAS  PubMed  Google Scholar 

  • Chubb J, Huxtable RJ (1978) Transport and biosynthesis of taurine in the stress heart. In: Barbeau AR, Huxtable RJ (eds) Taurine and neurological disorders. Raven Press, New York, pp 161–178

    Google Scholar 

  • Das J, Vason V, Sil PC (2012) Taurine exerts hypoglycemia effect in alloxan-induced diabetic rats, improves insulin-mediated glucose 2+transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol Appl Pharmacol 258:296–308

    Article  CAS  PubMed  Google Scholar 

  • DeLuca A, Pierno S, Camerino DC (2015) Taurine: the appeal of a safe amino acid for skeletal muscle disorders. J Transl Med 13:243

    Article  CAS  Google Scholar 

  • Franconi F, Martini F, Stendardi I, Matuccci R, Zilletti L, Giotti A (1982) Effect of taurine on calcium levels and contractility in guinea pig ventricular strips. Biochem Pharmacol 31:3181–3185

    Article  CAS  PubMed  Google Scholar 

  • Galloway SDR, Talanian JL, Shoveller AK, Heigenhauser GJF, Spriet LL (2008) Seven days of oral taurine supplementation does not increase muscle taurine content or alter substrate metabolism during prolonged exercise in humans. J Appl Physiol 105:643–651

    Article  CAS  PubMed  Google Scholar 

  • Graham TE, Turcotte LP, Kiens B, Richgter EA (1995) Training and muscle ammonia and amino acid metabolism in humans during prolonged exercise. J Appl Physiol 78:725–735

    Article  CAS  PubMed  Google Scholar 

  • Hansford RG (1976) Studies on the effects of coenzyme Ak-SH: acetyl Coenzyme A, Nicotinamide adenine dinucleotide: reduced nicotinamide adenine dinucleotide, and Adenosine diphosphate: adenosine triphosphate ratios on the interconversion of active and inactive pyruvate dehydrogenase in isolated rat heart mitochondria. J Biol Chem 251:5483–5489

    Article  CAS  PubMed  Google Scholar 

  • Hayes KC, Sturman JA (1981) Taurine in metabolism. Annu Rev Nutr 1:401–425

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Wu D, Chen W, Yan Z, Shi Y (2013) Proteolytic processing of the caspase 9 zymogen is required for apoptosome-mediated activation of caspase 9. J Biol Chem 288:15142–15147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DY, Boini KM, Lang PA, Grahammer F, Duszenko M, Heller-Stilb B, Warskulat U, Häussinger D, Lang F, Vallon V (2006) Impaired ability to increase water excretion in mice lacking the taurine transporter gene TAUT. Pflugers Arch 451:668–677

    Article  CAS  PubMed  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T, Ueki K, Yoshiyama M, Ikawa M, Okabe M, Schaffer SW, Fujio Y, Azuma J (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44:927–937

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Yoshikawa N, Inui T, Miyazaki N, Schaffer SW, Azuma J (2014a) Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice. PLoS One 2014:e107409

    Article  CAS  Google Scholar 

  • Ito T, Yoshikawa N, Schaffer SW, Azuma J (2014b) Tissue taurine depletion alters metabolic response to exercise and reduces running capacity in mice. J Amino Acids 2014:964680

    Article  PubMed  PubMed Central  Google Scholar 

  • Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232

    Article  CAS  PubMed  Google Scholar 

  • Jong CJ, Ito T, Prentice H, Wu JY, Schaffer SW (2017) Role of mitochondria and endoplasmic reticulum in taurine deficiency-mediated apoptosis. Nutrients 9:795

    Article  PubMed Central  CAS  Google Scholar 

  • Kaesler S, Sobiesiak M, Kneilling M, Volz T, Kempf WE, Lang PA, Lang KS, Wieder T, Heller-Stilb B, Warskulat U, Häussinger D, Lang F, Biedermann T (2012) Effective T-cell recall responses require the taurine transporter Taut. Eur J Immunol 42:831–841

    Article  CAS  PubMed  Google Scholar 

  • Knopf K, Sturman JA, Armstrong M, Hayes KC (1978) Taurine: an essential nutrient for the cat. J Nutr 108:773–778

    Article  CAS  PubMed  Google Scholar 

  • Leon R, Wu H, Jin J, Wei J, Buddhola C, Prentice H, Wu JY (2009) Protective function of taurine in glutamate-induced apoptosis in cultured neurons. J Neurosci Res 87:1185–1219

    Article  CAS  PubMed  Google Scholar 

  • Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:217–258

    Article  CAS  Google Scholar 

  • Mozaffari MS, Tan BH, Lucia MA, Schaffer SW (1986) Effect of drug-induced taurine depletion on cardiac contractility and metabolism. Biochem Pharmacol 35:985–989

    Article  CAS  PubMed  Google Scholar 

  • Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:413–459

    Article  CAS  PubMed  Google Scholar 

  • Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196

    Article  CAS  PubMed  Google Scholar 

  • Novotny MJ, Hogan PM, Paley DM, Adams HR (1991) Systolic and diastolic dysfunction of the left ventricle induced by dietary taurine deficiency in cats. Am J Phys 261:H121–H127

    CAS  Google Scholar 

  • Pion PD, Kittleson MD, Rogers QR, Morris JG (1978) Myocardial failure in cats associated with low plasma taurine: a reversible cardiomyopathy. Science 237:764–768

    Article  Google Scholar 

  • Ramila KC, Jong CJ, Pastukh V, Ito T, Azuma J, Schaffer SW (2015) Role of protein phosphorylation in excitation-contraction coupling in taurine deficient hearts. Am J Physiol 308:H232

    CAS  Google Scholar 

  • Rascher K, Servos G, Berthold G, Hartwig HG, Warskulat U, Heller-Stilb B, Häussinger D (2004) Vis Res 44:2091–2100

    Article  CAS  PubMed  Google Scholar 

  • Satoh H, Horie M (1997) Actions of taurine on the L-type Ca2+channel current in guinea pig ventricular cardiomyocytes. J Cardiovasc Pharmacol 30:711–716

    Article  CAS  PubMed  Google Scholar 

  • Sawamura A, Sada H, Azuma J, Kishimoto S, Sperelakis N (1990) Taurine modulates ion flux through cardiac Ca2+ channels. Cell Calcium 11:251–259

    Article  CAS  PubMed  Google Scholar 

  • Schaffer S, Kim HW (2018) Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther 26(3):225–241

    Article  CAS  Google Scholar 

  • Schaffer SW, Kulakowski EC, Kramer JH (1982) Taurine transport by reconstituted membrane vesicles. Adv Exp Med Biol 139:143–160

    Article  CAS  Google Scholar 

  • Schaffer SW, Jong CJ, Ramila KC, Azuma J (2010) Physiological role of taurine in heart and muscle. J Biomed Sci 17(Suppl 1):52

    Article  CAS  Google Scholar 

  • Schaffer S, Solodushko V, Azuma J (2000) Taurine-deficient cardiomyopathy: role of phospholipids, calcium and osmotic stress. Adv Exp Med Biol 483:57–69

    Google Scholar 

  • Schaffer SW, Jong CJ, Ito T, Azuma J (2014) Role of taurine in the pathologies of MELAS and MERRF. Amino Acids 46:47–56

    Article  CAS  PubMed  Google Scholar 

  • Schaffer SW, Jong CJ, Ito T, Azuma J (2016) Impaired energy metabolism of the taurine-deficient heart. Amino Acids 48:549–558

    Article  CAS  PubMed  Google Scholar 

  • Sergeeva OA, Fleischer W, Chepkova AN, Warskulat U, Häussinger D, Siebler M, Haas HL (2007) GABAA-receptor modification in taurine transporter knockout mice causes striatal disinhibition. J Physiol 585:535–548

    Article  CAS  Google Scholar 

  • Shetewy A, Shimada-Takaura K, Warner D, Jong CJ, Mehdi AB, Alexeyev M, Takahashi K, Schaffer SW (2016) Mitochondrial defects associated with β-alanine toxicity: relevance to hyper-beta-alaninemia. Mol Cell Biochem 416:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steele DS, Smith L, Miller DJ (1990) The effects of taurine on Ca2+ uptake by the sarcoplasmic reticulum and Ca2+ sensitivity of chemically skinned rat heart. J Physiol 422:499–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suleiman MS, Rodrigo GC, Chapman RA (1992) Interdependence of intracellular taurine and sodium in guinea pig heart. Cardiovasc Res 26:897–905

    Article  CAS  PubMed  Google Scholar 

  • Taranukhin AG, Taranukhina EY, Saransaari P, Podkletnova IM, Pelto-Huikko M, Oja SS (2010) Neuroprotection by taurine in ethanol-induced apoptosis in developing cerebellum. J Biomed Sci 17:S12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ventura-Clapier R, Garnier A, Veksler V, Joubert F (2011) Bioenergetics of the failing heart. Biochim Biophys Acta 1813:1360–1372

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Schaffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schaffer, S.W., Jong, C.J., Ramila, K.C., Ito, T., Kramer, J. (2022). Differences Between Physiological and Pharmacological Actions of Taurine. In: Schaffer, S.W., El Idrissi, A., Murakami, S. (eds) Taurine 12. Advances in Experimental Medicine and Biology, vol 1370. Springer, Cham. https://doi.org/10.1007/978-3-030-93337-1_30

Download citation

Publish with us

Policies and ethics