Skip to main content

Advertisement

Log in

Impaired energy metabolism of the taurine-deficient heart

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Taurine is a β-amino acid found in high concentrations in excitable tissues, including the heart. A significant reduction in myocardial taurine content leads to the development of a unique dilated, atrophic cardiomyopathy. One of the major functions of taurine in the heart is the regulation of the respiratory chain. Hence, we tested the hypothesis that taurine deficiency-mediated defects in respiratory chain function lead to impaired energy metabolism and reduced ATP generation. We found that while the rate of glycolysis was significantly enhanced in the taurine-deficient heart, glucose oxidation was diminished. The major site of reduced glucose oxidation was pyruvate dehydrogenase, an enzyme whose activity is reduced by the increase in the NADH/NAD+ ratio and by decreased availability of pyruvate for oxidation to acetyl CoA and changes in [Mg2+]i. Also diminished in the taurine-deficient heart was the oxidation of two other precursors of acetyl CoA, endogenous fatty acids and exogenous acetate. In the taurine-deficient heart, impaired citric acid cycle activity decreased both acetate oxidation and endogenous fatty acid oxidation, but reductions in the activity of the mitochondrial transporter, carnitine palmitoyl transferase, appeared to also contribute to the reduction in fatty acid oxidation. These changes diminished the rate of ATP production, causing a decline in the phosphocreatine/ATP ratio, a sign of reduced energy status. The findings support the hypothesis that the taurine-deficient heart is energy starved primarily because of impaired respiratory chain function, an increase in the NADH/NAD+ ratio and diminished long chain fatty acid uptake by the mitochondria. The results suggest that improved energy metabolism contributes to the beneficial effect of taurine therapy in patients suffering from heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arakawa K, Kudo T, Ikawa M, Morikawa N, Kawai Y, Shashi K, Lee J-D, Kuriaya M, Miyamori I, Okazawa H, Makoto Y (2010) Abnormal myocardial energy-production state in mitochondrial cardiomyopathy and acute response to l-arginine infusion: C-11 acetate kinetics revealed by positron emission tomography. Circ J 74:2702–2711

    Article  PubMed  Google Scholar 

  • Azuma J, Swanamura A, Awata N (1992) Usefulness of taurine in chronic congestive heart failure and its prospective application. Jpn Circ J 56:95–99

    Article  CAS  PubMed  Google Scholar 

  • Barger PM, Kelly DP (2001) PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med 10:238–245

    Article  Google Scholar 

  • Bartlett K, Eaton S (2004) Mitochondrial beta-oxidation. Eur J Biochem 271:4462–4469

    Article  Google Scholar 

  • Campbell FM, Kozak R, Wagner A, Altarejos JY, Dyck JRB, Belke DD, Severson DL, Kelly DP, Lopaschuk GD (2002) A role for peroxisome proliferator-activated receptor alpha (PPAR-alpha) in the control of cardiac malonyl CoA levels. J Biol Chem 277:40098–44103

    Article  Google Scholar 

  • Chapman RA, Suleiman M-S, Earm YE (1993) Taurine and the heart. Cardiovasc Res 27:358–363

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36927–36931

    Google Scholar 

  • Gabriel JL, Plaut GW (1984) Inhibition of bovine heart NAD-specific isocitrate dehydrogenase by reduced pyridine nucleotides: modulation of inhibition by ADP, NAD+, Ca2+, citrate, and isocitrate. Biochemistry 23:2773–2778

    Article  CAS  PubMed  Google Scholar 

  • Gajewski CD, Yang L, Schon EA, Manfredi G (2003) New insights into the bioenergetics of mitochondrial disorders using intracellular ATP reporters. Mol Biol Cell 14:3628–3635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingwall JS, Weiss RG (2004) Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 95:135–145

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T, Ueki K, Yoshiyama M, Ikawa M, Okabe M, Schaffer SW, Fujio Y, Azuma J (2008) Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol 44:927–937

    Article  CAS  PubMed  Google Scholar 

  • James AM, Wei Y-H, Pang C-Y, Murphy MP (1996) Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem J 318:401–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James AM, Sheard PW, Wei Y-H, Murphy MP (1999) Decreased ATP synthesis is phenotypically expressed during increased energy demand in fibroblasts containing mitochondrial tRNA mutations: implications for neurodegenerative and mitochondrial diseases. Eur J Biochem 259:462–469

    Article  CAS  PubMed  Google Scholar 

  • Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD (2011) targeting fatty acid and carbohydrate oxidation: a novel therapeutic intervention in the ischemic and failing heart. Biochem Biophys Acta 1813:1333–1350

    Article  CAS  PubMed  Google Scholar 

  • Jong CJ, Azuma J, Schaffer S (2012) Mechanism underling the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42:2223–2232

    Article  CAS  PubMed  Google Scholar 

  • Kami K, Fujita Y, Igarashi S, Koike S, Sugawara S, Ikeda S, Sato N, Ito M, Tanaka M, Tomita M, Soga T (2012) Metabolomic profiling rationalized pyruvate efficacy in cybrid cells harboring MELAS mitochondrial DNA mutations. Mitochondrion 12:644–653

    Article  CAS  PubMed  Google Scholar 

  • Kirino Y, Yasukawa T, Ohta S, Akira S, Ishihara K, Watanabe K, Suzuki T (2004) Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. Proc Natl Acad Sci 101:15070–15075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer JH, Lampson WG, Schaffer SW (1983) Effect of tolbutamide on myocardial energy metabolism. Am J Physiol 245:H313–H319

    CAS  PubMed  Google Scholar 

  • Krebs HA, Eggleston LV (1948) Metabolism of acetoacetate in animal tissues. Biochem J 42:294–305

    Article  CAS  PubMed Central  Google Scholar 

  • Lawlis VB, Roche TE (1981) Inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex by reduced nicotinamide adenine dinucleotide in the presence or absence of calcium ion and effect of adenosine 5′-diphosphate on reduced nicotinamide adenine dinucleotide inhibition. Biochemistry 20:2519–2524

    Article  CAS  PubMed  Google Scholar 

  • Pion PD, Kittleson MD, Rogers QR, Morris JG (1987) Myocardial failure in cats associated with low plasma taurine: a reversible cardiomyopathy. Science 237:764–768

    Article  CAS  PubMed  Google Scholar 

  • Ramila KC, Jong CJ, Pastukh V, Ito T, Azuma J, Schaffer SW (2015) Role of protein phosphorylation in excitation–contraction coupling in taurine deficient hearts. Am J Physiol 308:H232–H239

    CAS  Google Scholar 

  • Rosca MG, Hoppel CL (2010) Mitochondria in heart failure. Cardiovasc Res 88:40–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer SW, Tan BH, Wilson GL (1985) Development of a cardiomyopathy in a model of noninsulin-dependent diabetes. Am J Physiol 248:H179–H185

    CAS  PubMed  Google Scholar 

  • Schaffer SW, Seyed-Mozaffari M, Cutcliff CR, Wilson GL (1986) Postreceptor myocardial metabolic defect in a rat model of non-insulin-dependent diabetes mellitus. Diabetes 55:593–597

    Article  Google Scholar 

  • Schaffer SW, Solodushko V, Kakhniashvili D (2002) Beneficial effect of taurine depletion on osmotic, sodium and calcium loading. Am J Physiol 282:C1113–C1120

    Article  CAS  Google Scholar 

  • Schaffer SW, Jong CJ, Ito T, Azuma J (2014a) Effect of taurine on ischemia-reperfusion injury. Amino Acids 46:21–30

    Article  CAS  PubMed  Google Scholar 

  • Schaffer SW, Jong CJ, Ito T, Azuma J (2014b) Role of taurine in the pathologies of MELAS and MERRF. Amino Acids 46:47–56

    Article  CAS  PubMed  Google Scholar 

  • Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    Article  CAS  PubMed  Google Scholar 

  • Suleiman MS (1994) New concepts in the cardioprotective action of magnesium and taurine during the calcium paradox and ischaemia of the heart. Magnes Res 7:295–312

    CAS  PubMed  Google Scholar 

  • Suzuki T, Wada T, Saigo K, Watanabe K (2002) Taurine as a constituent of mitochondrial tRNAs: new insight into the functions of taurine and human mitochondrial diseases. EMBO J 21:6581–6589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thurston JH, Hauhart RE, Naccarato EF (1981) Taurine: possible role of osmotic regulation of mammalian heart. Science 214:1373–1374

    Article  CAS  PubMed  Google Scholar 

  • Ventura-Clapier R, Garnier A, Beksler V, Joubert F (2011) Bioenergetics of the failing heart. Biochim Biophys Acta 1813:1360–1372

    Article  CAS  PubMed  Google Scholar 

  • Wan B, LaNoue KF, Cheung JY, Scaduto RC Jr (1989) Regulation of citric acid cycle by calcium. J Biol Chem 264:13430–13439

    CAS  PubMed  Google Scholar 

  • Weitzman PDJ, Dunmore P (1969) Citrate synthases: allosteric regulation and molecular size. Biochem Biophys Acta 171:198–200

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Uehara Memorial Foundation and the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Schaffer.

Ethics declarations

Conflict of interest

Stephen Schaffer serves as a consultant of Red Bull. None of the other authors have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaffer, S.W., Shimada-Takaura, K., Jong, C.J. et al. Impaired energy metabolism of the taurine-deficient heart. Amino Acids 48, 549–558 (2016). https://doi.org/10.1007/s00726-015-2110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-2110-2

Keywords

Navigation