Skip to main content

Lung Cancer

  • Chapter
  • First Online:
Practical Oncologic Molecular Pathology

Part of the book series: Practical Anatomic Pathology ((PAP))

  • 1731 Accesses

Abstract

In the past few years, we have seen major breakthroughs in the treatment of lung cancer, especially non-small-cell lung cancer (NSCLC). Targeted therapy for late-stage adenocarcinoma has greatly expanded the clinical utility of molecular testing. Immunotherapy with immune checkpoint inhibitors further extended the benefit of novel therapeutics to other lung cancer types. In this chapter, the molecular basis and mutation landscape of lung cancer are reviewed; the clinically significant mutations are discussed in detail. Every aspect of the molecular genetic testing for lung cancer, from current standard of care recommended in the practice guidelines to recent developments including tumor mutation burden (TMB) measurement and liquid biopsy, are elaborated from indications, test methodologies, and result analyses to clinical reporting. At the end, six cases are presented for readers to learn the pathologic features and molecular genetic tests of NSCLC in different clinical scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.

    Article  PubMed  Google Scholar 

  2. Travis WD, et al. World Health Organization classification of tumours. In: Bosman FT, et al., editors. WHO classification of tumours of the lung, pleura, thymus and heart. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2015. p. 412.

    Google Scholar 

  3. Fong KM, et al. Molecular basis of lung carcinogenesis. In: Coleman WB, Tsongalis GJ, editors. The molecular basis of human cancer. New York: Springer; 2017. p. 447–96.

    Chapter  Google Scholar 

  4. Gazdar AF, Minna JD. Cigarettes, sex, and lung adenocarcinoma. J Natl Cancer Inst. 1997;89(21):1563–5.

    Article  CAS  PubMed  Google Scholar 

  5. American Cancer Society®. Cancer Facts & Figures 2020. 2020 [cited October 28, 2020]; Available from: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf

  6. Wakefield MA, et al. Impact of tobacco control policies and mass media campaigns on monthly adult smoking prevalence. Am J Public Health. 2008;98(8):1443–50.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reckamp KL. Targeted therapy for patients with metastatic non-small cell lung cancer. J Natl Compr Cancer Netw. 2018;16(5s):601–4.

    Article  Google Scholar 

  8. Ettinger DS, et al. NCCN guidelines insights: non-small cell lung cancer, version 1.2020. J Natl Compr Cancer Netw. 2019;17(12):1464–72.

    Article  CAS  Google Scholar 

  9. da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49–69.

    Article  PubMed  CAS  Google Scholar 

  10. Sabir SR, et al. EML4-ALK variants: biological and molecular properties, and the implications for patients. Cancers (Basel). 2017;9(9):118.

    Article  CAS  Google Scholar 

  11. Cui M, et al. Molecular and clinicopathological characteristics of ROS1-rearranged non-small-cell lung cancers identified by next-generation sequencing. Mol Oncol. 2020;14(11):2787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reungwetwattana T, et al. The race to target MET exon 14 skipping alterations in non-small cell lung cancer: the why, the how, the who, the unknown, and the inevitable. Lung Cancer. 2017;103:27–37.

    Article  PubMed  Google Scholar 

  13. Leonetti A, et al. BRAF in non-small cell lung cancer (NSCLC): pickaxing another brick in the wall. Cancer Treat Rev. 2018;66:82–94.

    Article  CAS  PubMed  Google Scholar 

  14. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.

    Article  CAS  Google Scholar 

  15. Vaishnavi A, et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med. 2013;19(11):1469–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cappuzzo F, Bemis L, Varella-Garcia M. HER2 mutation and response to trastuzumab therapy in non-small-cell lung cancer. N Engl J Med. 2006;354(24):2619–21.

    Article  CAS  PubMed  Google Scholar 

  17. De Grève J, et al. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer. 2012;76(1):123–7.

    Article  PubMed  Google Scholar 

  18. Li BT, et al. Ado-trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol. 2018;36(24):2532–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li W, et al. Primary and acquired EGFR T790M-mutant NSCLC patients identified by routine mutation testing show different characteristics but may both respond to osimertinib treatment. Cancer Lett. 2018;423:9–15.

    Article  CAS  PubMed  Google Scholar 

  20. Assi H, et al. Prevalence of T790M mutation among TKI-therapy resistant Lebanese lung cancer patients based on liquid biopsy analysis: a first report from a major tertiary care center. Mol Biol Rep. 2019;46(4):3671–6.

    Article  CAS  PubMed  Google Scholar 

  21. Fang W, et al. EGFR exon 20 insertion mutations and response to osimertinib in non-small-cell lung cancer. BMC Cancer. 2019;19(1):595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Cress WD, et al. Lung cancer mutations and use of targeted agents in Hispanics. Rev Recent Clin Trials. 2014;9(4):225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bubendorf L, et al. Testing for ROS1 in non-small cell lung cancer: a review with recommendations. Virchows Arch. 2016;469(5):489–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shackelford RE, et al. ALK-rearrangements and testing methods in non-small cell lung cancer: a review. Genes Cancer. 2014;5(1–2):1–14.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Choi YL, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 2008;68(13):4971–6.

    Article  CAS  PubMed  Google Scholar 

  26. Soda M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6.

    Article  CAS  PubMed  Google Scholar 

  27. Lin JJ, Shaw AT. Recent advances in targeting ROS1 in lung cancer. J Thorac Oncol. 2017;12(11):1611–25.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bergethon K, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30(8):863–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Le T, Gerber DE. ALK alterations and inhibition in lung cancer. Semin Cancer Biol. 2017;42:81–8.

    Article  CAS  PubMed  Google Scholar 

  30. Kawakami H, et al. Targeting MET amplification as a new oncogenic driver. Cancers (Basel). 2014;6(3):1540–52.

    Article  CAS  Google Scholar 

  31. Bronte G, et al. Targeting RET-rearranged non-small-cell lung cancer: future prospects. Lung Cancer (Auckl). 2019;10:27–36.

    CAS  Google Scholar 

  32. Ackermann CJ, et al. Targeted therapy for RET-rearranged non-small cell lung cancer: clinical development and future directions. Onco Targets and Therapy. 2019;12:7857–64.

    Article  CAS  Google Scholar 

  33. Reddy VP, Laurie MG, Elvin JA, Vergilio J-A, Suh J, Ramkissoon S, et al. BRAF fusions in clinically advanced non-small cell lung cancer: an emerging target for anti-BRAF therapies. J Clin Oncol. 2017;35:9072.

    Article  Google Scholar 

  34. Jang JS, et al. Common oncogene mutations and novel SND1-BRAF transcript fusion in lung adenocarcinoma from never smokers. Sci Rep. 2015;5:9755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vaishnavi A, Le AT, Doebele RC. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015;5(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  36. Russell JP, et al. The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene. 2000;19(50):5729–35.

    Article  CAS  PubMed  Google Scholar 

  37. Ricciuti B, et al. Targeting NTRK fusion in non-small cell lung cancer: rationale and clinical evidence. Med Oncol. 2017;34(6):105.

    Article  PubMed  CAS  Google Scholar 

  38. Kris MG, et al. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann Oncol. 2015;26(7):1421–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Okamoto T, et al. Clinical and genetic implications of mutation burden in squamous cell carcinoma of the lung. Ann Surg Oncol. 2018;25(6):1564–71.

    Article  PubMed  Google Scholar 

  40. Gandara DR, et al. Squamous cell lung cancer: from tumor genomics to cancer therapeutics. Clin Cancer Res. 2015;21(10):2236–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. TCGA. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25.

    Article  CAS  Google Scholar 

  42. Schwaederle M, et al. Squamousness: next-generation sequencing reveals shared molecular features across squamous tumor types. Cell Cycle. 2015;14(14):2355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Friedlaender A, et al. Next generation sequencing and genetic alterations in squamous cell lung carcinoma: where are we today? Front Oncol. 2019;9:166.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu F, et al. A TP53-associated gene signature for prediction of prognosis and therapeutic responses in lung squamous cell carcinoma. Onco Targets Ther. 2020;9(1):1731943.

    Google Scholar 

  45. Kashima J, Kitadai R, Okuma Y. Molecular and morphological profiling of lung cancer: a foundation for “next-generation” pathologists and oncologists. Cancers (Basel). 2019;11(5):599.

    Article  CAS  Google Scholar 

  46. Paik PK, et al. Next-generation sequencing of stage IV squamous cell lung cancers reveals an association of PI3K aberrations and evidence of clonal heterogeneity in patients with brain metastases. Cancer Discov. 2015;5(6):610–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Berland L, et al. Current views on tumor mutational burden in patients with non-small cell lung cancer treated by immune checkpoint inhibitors. J Thorac Dis. 2019;11(Suppl 1):S71–80.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lindeman NI, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Mol Diagn. 2018;20(2):129–59.

    Article  CAS  PubMed  Google Scholar 

  49. McDowell EM, et al. The respiratory epithelium. V. Histogenesis of lung carcinomas in the human. J Natl Cancer Inst. 1978;61(2):587–606.

    CAS  PubMed  Google Scholar 

  50. Travis WD, et al. Introduction to the 2015 World Health Organization classification of tumors of the lung, pleura, thymus, and heart. J Thorac Oncol. 2015;10(9):1240–2.

    Article  PubMed  Google Scholar 

  51. Inamura K, et al. EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset. Mod Pathol. 2009;22(4):508–15.

    Article  CAS  PubMed  Google Scholar 

  52. Heeke S, Hofman P. Tumor mutational burden assessment as a predictive biomarker for immunotherapy in lung cancer patients: getting ready for prime-time or not? Transl Lung Cancer Res. 2018;7(6):631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Greillier L, Tomasini P, Barlesi F. The clinical utility of tumor mutational burden in non-small cell lung cancer. Transl Lung Cancer Res. 2018;7(6):639–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alborelli I, et al. Tumor mutational burden assessed by targeted NGS predicts clinical benefit from immune checkpoint inhibitors in non-small cell lung cancer. J Pathol. 2020;250(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  55. Umemura S, Tsuchihara K, Goto K. Genomic profiling of small-cell lung cancer: the era of targeted therapies. Jpn J Clin Oncol. 2015;45(6):513–9.

    PubMed  Google Scholar 

  56. Kim YH, et al. Combined microarray analysis of small cell lung cancer reveals altered apoptotic balance and distinct expression signatures of MYC family gene amplification. Oncogene. 2006;25(1):130–8.

    Article  CAS  PubMed  Google Scholar 

  57. Rudin CM, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet. 2012;44(10):1111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Semenova EA, et al. Transcription factor NFIB is a driver of small cell lung cancer progression in mice and marks metastatic disease in patients. Cell Rep. 2016;16(3):631–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. D’Amico D, et al. High frequency of somatically acquired p53 mutations in small-cell lung cancer cell lines and tumors. Oncogene. 1992;7(2):339–46.

    PubMed  Google Scholar 

  60. Yokomizo A, et al. PTEN/MMAC1 mutations identified in small cell, but not in non-small cell lung cancers. Oncogene. 1998;17(4):475–9.

    Article  CAS  PubMed  Google Scholar 

  61. Yuan J, et al. Expression of p16 and lack of pRB in primary small cell lung cancer. J Pathol. 1999;189(3):358–62.

    Article  CAS  PubMed  Google Scholar 

  62. Balsara BR, Testa JR. Chromosomal imbalances in human lung cancer. Oncogene. 2002;21(45):6877–83.

    Article  CAS  PubMed  Google Scholar 

  63. Kim KB, Dunn CT, Park KS. Recent progress in mapping the emerging landscape of the small-cell lung cancer genome. Exp Mol Med. 2019;51(12):1–13.

    PubMed  PubMed Central  Google Scholar 

  64. Nishio Y, et al. Telomere length, telomerase activity, and expressions of human telomerase mRNA component (hTERC) and human telomerase reverse transcriptase (hTERT) mRNA in pulmonary neuroendocrine tumors. Jpn J Clin Oncol. 2007;37(1):16–22.

    Article  PubMed  Google Scholar 

  65. Simbolo M, et al. Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D. J Pathol. 2017;241(4):488–500.

    Article  CAS  PubMed  Google Scholar 

  66. Jones MH, et al. Two prognostically significant subtypes of high-grade lung neuroendocrine tumours independent of small-cell and large-cell neuroendocrine carcinomas identified by gene expression profiles. Lancet. 2004;363(9411):775–81.

    Article  CAS  PubMed  Google Scholar 

  67. Swarts DR, Ramaekers FC, Speel EJ. Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities. Biochim Biophys Acta. 2012;1826(2):255–71.

    CAS  PubMed  Google Scholar 

  68. Hiroshima K, et al. Distinction of pulmonary large cell neuroendocrine carcinoma from small cell lung carcinoma: a morphological, immunohistochemical, and molecular analysis. Mod Pathol. 2006;19(10):1358–68.

    Article  CAS  PubMed  Google Scholar 

  69. Peng WX, et al. Array-based comparative genomic hybridization analysis of high-grade neuroendocrine tumors of the lung. Cancer Sci. 2005;96(10):661–7.

    Article  CAS  PubMed  Google Scholar 

  70. Terra SB, et al. Molecular characterization of pulmonary sarcomatoid carcinoma: analysis of 33 cases. Mod Pathol. 2016;29(8):824–31.

    Article  CAS  PubMed  Google Scholar 

  71. Ushiki A, et al. Genetic heterogeneity of EGFR mutation in pleomorphic carcinoma of the lung: response to gefitinib and clinical outcome. Jpn J Clin Oncol. 2009;39(4):267–70.

    Article  PubMed  Google Scholar 

  72. Toyokawa G, et al. The first case of lung carcinosarcoma harboring in-frame deletions at exon19 in the EGFR gene. Lung Cancer. 2013;81(3):491–4.

    Article  PubMed  Google Scholar 

  73. Fallet V, et al. High-throughput somatic mutation profiling in pulmonary sarcomatoid carcinomas using the LungCarta™ Panel: exploring therapeutic targets. Ann Oncol. 2015;26(8):1748–53.

    Article  CAS  PubMed  Google Scholar 

  74. Liang X, et al. Mutation landscape and tumor mutation burden analysis of Chinese patients with pulmonary sarcomatoid carcinomas. Int J Clin Oncol. 2019;24(9):1061–8.

    Article  CAS  PubMed  Google Scholar 

  75. Manabe S, et al. Analysis of targeted somatic mutations in pleomorphic carcinoma of the lung using next-generation sequencing technique. Thorac Cancer. 2020;11(8):2262–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Italiano A, et al. EGFR and KRAS status of primary sarcomatoid carcinomas of the lung: implications for anti-EGFR treatment of a rare lung malignancy. Int J Cancer. 2009;125(10):2479–82.

    Article  CAS  PubMed  Google Scholar 

  77. Pelosi G, et al. Multiparametric molecular characterization of pulmonary sarcomatoid carcinoma reveals a nonrandom amplification of anaplastic lymphoma kinase (ALK) gene. Lung Cancer. 2012;77(3):507–14.

    Article  PubMed  Google Scholar 

  78. Liu X, et al. Next-generation sequencing of pulmonary sarcomatoid carcinoma reveals high frequency of actionable MET gene mutations. J Clin Oncol. 2016;34(8):794–802.

    Article  CAS  PubMed  Google Scholar 

  79. Zhao J, et al. Clinicopathologic features and genomic analysis of pulmonary blastomatoid carcinosarcoma. BMC Cancer. 2020;20(1):248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Macher-Goeppinger S, et al. Expression and mutation analysis of EGFR, c-KIT, and β-catenin in pulmonary blastoma. J Clin Pathol. 2011;64(4):349–53.

    Article  CAS  PubMed  Google Scholar 

  81. Nakatani Y, et al. Aberrant nuclear localization and gene mutation of beta-catenin in low-grade adenocarcinoma of fetal lung type: up-regulation of the Wnt signaling pathway may be a common denominator for the development of tumors that form morules. Mod Pathol. 2002;15(6):617–24.

    Article  PubMed  Google Scholar 

  82. Wu Q, et al. Primary pulmonary lymphoepithelioma-like carcinoma is characterized by high PD-L1 expression, but low tumor mutation burden. Pathol Res Pract. 2020;216(8):153043.

    Article  CAS  PubMed  Google Scholar 

  83. Falk N, et al. Primary pulmonary salivary gland-type tumors: a review and update. Adv Anat Pathol. 2016;23(1):13–23.

    Article  CAS  PubMed  Google Scholar 

  84. Xie XH, et al. Clinical features, treatment, and survival outcome of primary pulmonary NUT midline carcinoma. Orphanet J Rare Dis. 2020;15(1):183.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sholl LM, et al. Primary pulmonary NUT midline carcinoma: clinical, radiographic, and pathologic characterizations. J Thorac Oncol. 2015;10(6):951–9.

    Article  PubMed  PubMed Central  Google Scholar 

  86. French CA, et al. BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene. 2008;27(15):2237–42.

    Article  CAS  PubMed  Google Scholar 

  87. Schwartz BE, et al. Differentiation of NUT midline carcinoma by epigenomic reprogramming. Cancer Res. 2011;71(7):2686–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lindeman NI, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Mol Diagn. 2013;15(4):415–53.

    Article  CAS  PubMed  Google Scholar 

  89. Drilon A. TRK inhibitors in TRK fusion-positive cancers. Ann Oncol. 2019;30(Suppl 8):viii23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hellmann MD, et al. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378(22):2093–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. National Comprehensive Cancer Network (N.C.C.N®). Non-Small Cell Lung Cancer (Version 8.2020). September 15, 2020 [Accessed: October 20, 2020]; Available from: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf

  92. Consortium TAPG. AACR project GENIE: powering precision medicine through an international consortium. Cancer Discov. 2017;7(8):818–31.

    Article  Google Scholar 

  93. Mogi A, Kuwano H. TP53 mutations in nonsmall cell lung cancer. J Biomed Biotechnol. 2011;2011:583929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Roeper J, et al. TP53 co-mutations in EGFR mutated patients in NSCLC stage IV: a strong predictive factor of ORR, PFS and OS in EGFR mt+ NSCLC. Oncotarget. 2020;11(3):250–64.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yatabe Y, Matsuo K, Mitsudomi T. Heterogeneous distribution of EGFR mutations is extremely rare in lung adenocarcinoma. J Clin Oncol. 2011;29(22):2972–7.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang J, et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science. 2014;346(6206):256–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sherwood J, et al. Mutation status concordance between primary lesions and metastatic sites of advanced non-small-cell lung cancer and the impact of mutation testing methodologies: a literature review. J Exp Clin Cancer Res. 2015;34:92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Chang YL, Wu CT, Lee YC. Surgical treatment of synchronous multiple primary lung cancers: experience of 92 patients. J Thorac Cardiovasc Surg. 2007;134(3):630–7.

    Article  PubMed  Google Scholar 

  99. Arai J, et al. Clinical and molecular analysis of synchronous double lung cancers. Lung Cancer. 2012;77(2):281–7.

    Article  PubMed  Google Scholar 

  100. Girard N, et al. Comprehensive histologic assessment helps to differentiate multiple lung primary nonsmall cell carcinomas from metastases. Am J Surg Pathol. 2009;33(12):1752–64.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gerlinger M, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46(3):225–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chang JC, et al. Comprehensive next-generation sequencing unambiguously distinguishes separate primary lung carcinomas from intrapulmonary metastases: comparison with standard histopathologic approach. Clin Cancer Res. 2019;25(23):7113–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schneider F, et al. Morphological and molecular approach to synchronous non-small cell lung carcinomas: impact on staging. Mod Pathol. 2016;29(7):735–42.

    Article  CAS  PubMed  Google Scholar 

  104. Awad MM, et al. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression. J Clin Oncol. 2016;34(7):721–30.

    Article  CAS  PubMed  Google Scholar 

  105. Li Y, et al. Identification of MET exon14 skipping by targeted DNA- and RNA-based next-generation sequencing in pulmonary sarcomatoid carcinomas. Lung Cancer. 2018;122:113–9.

    Article  PubMed  Google Scholar 

  106. U.S. Food & Drug Administration (FDA). List of Cleared or Approved Companion Diagnostic Devices (In Vitro and Imaging Tools). 2020 [cited October 27, 2020]; Available from: https://www.fda.gov/medical-devices/vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-vitro-and-imaging-tools

  107. Layfield LJ, et al. Molecular testing strategies for pulmonary adenocarcinoma: an optimal approach with cost analysis. Arch Pathol Lab Med. 2019;143(5):628–33.

    Article  CAS  PubMed  Google Scholar 

  108. Nam SK, et al. Effects of fixation and storage of human tissue samples on nucleic acid preservation. Korean J Pathol. 2014;48(1):36–42.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kim L, Tsao MS. Tumour tissue sampling for lung cancer management in the era of personalised therapy: what is good enough for molecular testing? Eur Respir J. 2014;44(4):1011–22.

    Article  PubMed  Google Scholar 

  110. Baloglu G, et al. The effects of tissue fixation alternatives on DNA content: a study on normal colon tissue. Appl Immunohistochem Mol Morphol. 2008;16(5):485–92.

    Article  CAS  PubMed  Google Scholar 

  111. Bellevicine C, et al. How to prepare cytological samples for molecular testing. J Clin Pathol. 2017;70(10):819–26.

    Article  CAS  PubMed  Google Scholar 

  112. Mikubo M, et al. Calculating the tumor nuclei content for comprehensive cancer panel testing. J Thorac Oncol. 2020;15(1):130–7.

    Article  CAS  PubMed  Google Scholar 

  113. Burghel GJ, et al. The importance of neoplastic cell content assessment and enrichment by macrodissection in cancer pharmacogenetic testing. J Clin Pathol. 2019;72(10):721–2.

    Article  CAS  PubMed  Google Scholar 

  114. Villatoro S, et al. Prospective detection of mutations in cerebrospinal fluid, pleural effusion, and ascites of advanced cancer patients to guide treatment decisions. Mol Oncol. 2019;13(12):2633–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gandara DR, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 2018;24(9):1441–8.

    Article  CAS  PubMed  Google Scholar 

  116. Leighl NB, et al. Clinical utility of comprehensive cell-free DNA analysis to identify genomic biomarkers in patients with newly diagnosed metastatic non–small cell lung cancer. Clin Cancer Res. 2019;25(15):4691–700.

    Article  CAS  PubMed  Google Scholar 

  117. Rijavec E, et al. Liquid biopsy in non-small cell lung cancer: highlights and challenges. Cancers (Basel). 2019;12(1):17.

    Article  CAS  Google Scholar 

  118. Revelo AE, et al. Liquid biopsy for lung cancers: an update on recent developments. Ann Transl Med. 2019;7(15):349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chabon JJ, et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun. 2016;7:11815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Thress KS, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 2015;21(6):560–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dagogo-Jack I, et al. Tracking the evolution of resistance to ALK tyrosine kinase inhibitors through longitudinal analysis of circulating tumor DNA. JCO Precis Oncol. 2018;2:1–14.

    Google Scholar 

  122. McCoach CE, et al. Clinical utility of cell-free DNA for the detection of ALK fusions and genomic mechanisms of ALK inhibitor resistance in non–small cell lung cancer. Clin Cancer Res. 2018;24(12):2758–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Soria JC, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113–25.

    Article  CAS  PubMed  Google Scholar 

  124. Chan TA, et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol. 2019;30(1):44–56.

    Article  CAS  PubMed  Google Scholar 

  125. Chalmers ZR, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Carbone DP, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376(25):2415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Socinski MA, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378(24):2288–301.

    Article  CAS  PubMed  Google Scholar 

  129. Langer C, et al. OA04.05 KEYNOTE-021: TMB and outcomes for carboplatin and pemetrexed with or without pembrolizumab for nonsquamous NSCLC. J Thorac Oncol. 2019;14(10, Supplement):S216.

    Article  Google Scholar 

  130. Garassino M, et al. OA04.06 evaluation of TMB in KEYNOTE-189: pembrolizumab plus chemotherapy vs placebo plus chemotherapy for nonsquamous NSCLC. J Thorac Oncol. 2019;14(10, Supplement):S216–7.

    Article  Google Scholar 

  131. Bevins N, et al. Comparison of commonly used solid tumor targeted gene sequencing panels for estimating tumor mutation burden shows analytical and prognostic concordance within the cancer genome atlas cohort. J Immunother Cancer. 2020;8(1):e000613.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Chaudhary R, et al. A scalable solution for tumor mutational burden from formalin-fixed, paraffin-embedded samples using the Oncomine Tumor Mutation Load Assay. Transl Lung Cancer Res. 2018;7(6):616–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rizvi H, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 2018;36(7):633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li R, et al. Choosing tumor mutational burden wisely for immunotherapy: a hard road to explore. Biochim Biophys Acta Rev Cancer. 1874;2020(2):188420.

    Article  CAS  Google Scholar 

  135. Wang Z, et al. Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non-small cell lung cancer with use of a next-generation sequencing cancer gene panel. JAMA Oncol. 2019;5(5):696–702.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Imperial R, et al. Matched whole-genome sequencing (WGS) and whole-exome sequencing (WES) of tumor tissue with circulating tumor DNA (ctDNA) analysis: complementary modalities in clinical practice. Cancers (Basel). 2019;11(9):1399.

    Article  CAS  Google Scholar 

  137. U.S. Food & Drug Administration (FDA). FDA approves pembrolizumab for adults and children with TMB-H solid tumors. June 17, 2020; Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors

  138. Merino DM, et al. Establishing guidelines to harmonize tumor mutational burden (TMB): in silico assessment of variation in TMB quantification across diagnostic platforms: phase I of the Friends of Cancer Research TMB Harmonization Project. J Immunother Cancer. 2020;8(1):e000147.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Büttner R, et al. Implementing TMB measurement in clinical practice: considerations on assay requirements. ESMO Open. 2019;4(1):e000442.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Brahmer J, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rittmeyer A, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.

    Article  PubMed  Google Scholar 

  142. Miura Y, Sunaga N. Role of immunotherapy for oncogene-driven non-small cell lung cancer. Cancers (Basel). 2018;10(8):245.

    Article  CAS  Google Scholar 

  143. Biton J, et al. TP53, STK11, and EGFR mutations predict tumor immune profile and the response to anti-PD-1 in lung adenocarcinoma. Clin Cancer Res. 2018;24(22):5710–23.

    Article  CAS  PubMed  Google Scholar 

  144. Giroux Leprieur E, et al. Circulating tumor DNA evaluated by Next-Generation Sequencing is predictive of tumor response and prolonged clinical benefit with nivolumab in advanced non-small cell lung cancer. Onco Targets Ther. 2018;7(5):e1424675.

    Google Scholar 

  145. Iijima Y, et al. Very early response of circulating tumour-derived DNA in plasma predicts efficacy of nivolumab treatment in patients with non-small cell lung cancer. Eur J Cancer. 2017;86:349–57.

    Article  CAS  PubMed  Google Scholar 

  146. Looney T, et al. TCR beta chain convergence defines the tumor infiltrating T cell repertoire of melanoma and non-small cell lung carcinoma. Ann Oncol. 2018;29:viii19–20.

    Article  Google Scholar 

  147. Jermann P, et al. TCR-beta repertoire convergence and evenness are associated with response to immune checkpoint inhibitors. Ann Oncol. 2019;30:v851.

    Article  Google Scholar 

  148. Han J, et al. TCR repertoire diversity of peripheral PD-1(+)CD8(+) T cells predicts clinical outcomes after immunotherapy in patients with non-small cell lung cancer. Cancer Immunol Res. 2020;8(1):146–54.

    Article  CAS  PubMed  Google Scholar 

  149. Pao W, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004;101(36):13306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linsheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, R., Zhang, L. (2021). Lung Cancer. In: Ding, Y., Zhang, L. (eds) Practical Oncologic Molecular Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-73227-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73227-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73226-4

  • Online ISBN: 978-3-030-73227-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics