Skip to main content

Acute Myeloid Leukemia

  • Chapter
  • First Online:
Practical Oncologic Molecular Pathology

Part of the book series: Practical Anatomic Pathology ((PAP))

  • 1763 Accesses

Abstract

Acute myeloid leukemia (AML) is a heterogeneous malignancy at the genetic level, and molecular genetic analysis of AML has become critical not only for diagnosis and classification but also for prognostic stratification, treatment decisions, and monitoring of minimal residual disease. Genetic testing of multiple genes relevant to the pathobiology of leukemogenesis and clinical management is already the standard of care in patients with AML, and mutations in several genes are assuming increasing clinical importance. This chapter reviews the common cytogenetic and molecular genetic abnormalities of AML, along with the approaches and methods used in the analysis of these abnormalities to address the practical questions frequently encountered in the pathologic diagnosis of AML patients, as well as key points and pitfalls in the clinical interpretation of molecular tests in guiding precision AML management. At the end, five cases are presented to illustrate the molecular genetic pathology of different AML entities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett JM, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451–8.

    Article  CAS  PubMed  Google Scholar 

  2. Ley TJ, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456(7218):66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Papaemmanuil E, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arber DA, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Article  CAS  PubMed  Google Scholar 

  5. Grimwade D, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116(3):354–65.

    Article  CAS  PubMed  Google Scholar 

  6. Arber DA, et al. Acute myeloid leukaemia with recurrent genetic abnormalities. In: Swerdlow S, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2017. p. 130–45.

    Google Scholar 

  7. National Comprehensive Cancer Network (NCCN). Acute Myeloid Leukemia (Version 1.2021). October 14, 2020. Available from: https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf. Accessed 3 Nov 2020.

  8. Dohner H, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Arber DA, et al. Initial diagnostic workup of acute Leukemia: guideline from the college of American pathologists and the American society of hematology. Arch Pathol Lab Med. 2017;141(10):1342–93.

    Article  PubMed  Google Scholar 

  10. Sridhar K, et al. Molecular genetic testing methodologies in hematopoietic diseases: current and future methods. Int J Lab Hematol. 2019;41(Suppl 1):102–16.

    Article  PubMed  Google Scholar 

  11. Li S, et al. Multimodality technologies in the assessment of hematolymphoid neoplasms. Arch Pathol Lab Med. 2017;141(3):341–54.

    Article  PubMed  Google Scholar 

  12. He R, et al. Conventional karyotyping and fluorescence in situ hybridization: an effective utilization strategy in diagnostic adult acute myeloid leukemia. Am J Clin Pathol. 2015;143(6):873–8.

    Article  PubMed  Google Scholar 

  13. Wheeler FC, et al. Limited utility of fluorescence in situ hybridization for recurrent abnormalities in acute myeloid Leukemia at diagnosis and follow-up. Am J Clin Pathol. 2018;149(5):418–24.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mrózek K, et al. Comparison of cytogenetic and molecular genetic detection of t(8;21) and inv(16) in a prospective series of adults with de novo acute myeloid leukemia: a Cancer and Leukemia group B study. J Clin Oncol. 2001;19(9):2482–92.

    Article  PubMed  Google Scholar 

  15. Hammer RD, et al. Is it time for a new gold standard? FISH vs cytogenetics in AML diagnosis. Am J Clin Pathol. 2016;145(3):430–2.

    Article  CAS  PubMed  Google Scholar 

  16. Taylor AC. Titration of heparinase for removal of the PCR-inhibitory effect of heparin in DNA samples. Mol Ecol. 1997;6(4):383–5.

    Article  CAS  PubMed  Google Scholar 

  17. Do H, Dobrovic A. Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem. 2015;61(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  18. Lee SH, et al. ICSH guidelines for the standardization of bone marrow specimens and reports. Int J Lab Hematol. 2008;30(5):349–64.

    Article  PubMed  Google Scholar 

  19. Schrijver WA, et al. Influence of decalcification procedures on immunohistochemistry and molecular pathology in breast cancer. Mod Pathol. 2016;29(12):1460–70.

    Article  CAS  PubMed  Google Scholar 

  20. Singh VM, et al. Analysis of the effect of various decalcification agents on the quantity and quality of nucleic acid (DNA and RNA) recovered from bone biopsies. Ann Diagn Pathol. 2013;17(4):322–6.

    Article  PubMed  Google Scholar 

  21. Poire X, et al. Allogeneic stem cell transplantation in adult patients with acute myeloid leukaemia and 17p abnormalities in first complete remission: a study from the acute Leukemia working party (ALWP) of the European Society for Blood and Marrow Transplantation (EBMT). J Hematol Oncol. 2017;10(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bezerra MF, et al. Co-occurrence of DNMT3A, NPM1, FLT3 mutations identifies a subset of acute myeloid leukemia with adverse prognosis. Blood. 2020;135(11):870–5.

    Article  PubMed  Google Scholar 

  23. Straube J, et al. The impact of age, NPM1mut, and FLT3ITD allelic ratio in patients with acute myeloid leukemia. Blood. 2018;131(10):1148–53.

    Article  CAS  PubMed  Google Scholar 

  24. Vardiman JW, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.

    Article  CAS  PubMed  Google Scholar 

  25. Gerstung M, et al. Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet. 2017;49(3):332–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sorror ML, et al. Development and validation of a novel acute myeloid Leukemia-composite model to estimate risks of mortality. JAMA Oncol. 2017;3(12):1675–82.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lagunas-Rangel FA, et al. Acute myeloid leukemia-genetic alterations and their clinical prognosis. Int J Hematol Oncol Stem Cell Res. 2017;11(4):328–39.

    PubMed  PubMed Central  Google Scholar 

  28. Tallman MS, Altman JK. How I treat acute promyelocytic leukemia. Blood. 2009;114(25):5126–35.

    Article  CAS  PubMed  Google Scholar 

  29. Wu N C-h, et al. A fast and accurate cartridge-based RT-qPCR assay to quantify PML-Rara mRNA fusion transcripts near the point of care. Blood. 2018;132(Supplement 1):1481–1.

    Google Scholar 

  30. Kim MJ, et al. FISH-negative cryptic PML-RARA rearrangement detected by long-distance polymerase chain reaction and sequencing analyses: a case study and review of the literature. Cancer Genet Cytogenet. 2010;203(2):278–83.

    Article  CAS  PubMed  Google Scholar 

  31. Dimov ND, et al. Rapid and reliable confirmation of acute promyelocytic leukemia by immunofluorescence staining with an antipromyelocytic leukemia antibody: the M. D. Anderson Cancer Center experience of 349 patients. Cancer. 2010;116(2):369–76.

    Article  CAS  PubMed  Google Scholar 

  32. Geoffroy MC, de Thé H. Classic and variants APLs, as viewed from a therapy response. Cancers (Basel). 2020;12(4):967.

    Article  CAS  Google Scholar 

  33. Yin CC, et al. Identification of a novel fusion gene, IRF2BP2-RARA, in acute promyelocytic leukemia. J Natl Compr Cancer Netw. 2015;13(1):19–22.

    Article  CAS  Google Scholar 

  34. Singh MK, et al. Diagnosis of variant RARA translocation using standard dual-color dual-fusion PML/RARA FISH probes: an illustrative report. Hematol Oncol Stem Cell Ther. 2019;12(1):50–3.

    Article  CAS  PubMed  Google Scholar 

  35. Khanal N, Upadhyay Banskota S, Bhatt VR. Novel treatment paradigms in acute myeloid leukemia. Clin Pharmacol Ther. 2020;108(3):506–14.

    Google Scholar 

  36. DiNardo CD, Wei AH. How I treat acute myeloid leukemia in the era of new drugs. Blood. 2020;135(2):85–96.

    Article  PubMed  Google Scholar 

  37. Lachowiez CA, et al. Outcomes of older patients with NPM1-mutated AML: current treatments and the promise of venetoclax-based regimens. Blood Adv. 2020;4(7):1311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tiong IS, et al. Venetoclax induces rapid elimination of NPM1 mutant measurable residual disease in combination with low-intensity chemotherapy in acute myeloid leukaemia. Br J Haematol. 2020; Online ahead of print

    Google Scholar 

  39. Keung YK, et al. Philadelphia chromosome positive myelodysplastic syndrome and acute myeloid leukemia-retrospective study and review of literature. Leuk Res. 2004;28(6):579–86.

    Article  CAS  PubMed  Google Scholar 

  40. Konoplev S, et al. Molecular characterization of de novo Philadelphia chromosome-positive acute myeloid leukemia. Leuk Lymphoma. 2013;54(1):138–44.

    Article  CAS  PubMed  Google Scholar 

  41. Paietta E, et al. Biologic heterogeneity in Philadelphia chromosome-positive acute leukemia with myeloid morphology: the eastern cooperative oncology group experience. Leukemia. 1998;12(12):1881–5.

    Article  CAS  PubMed  Google Scholar 

  42. Soupir CP, et al. Philadelphia chromosome-positive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis. Am J Clin Pathol. 2007;127(4):642–50.

    Article  PubMed  Google Scholar 

  43. Nacheva EP, et al. Does BCR/ABL1 positive acute myeloid leukaemia exist? Br J Haematol. 2013;161(4):541–50.

    Article  CAS  PubMed  Google Scholar 

  44. Neuendorff NR, et al. BCR-ABL(+) acute myeloid leukemia: are we always dealing with a high-risk disease? Blood Adv. 2018;2(12):1409–11.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chantepie SP, et al. Allogeneic stem cell transplantation (Allo-SCT) for de novo Ph+ AML: a study from the French society of bone marrow transplantation and cell therapy. Bone Marrow Transplant. 2015;50(12):1586–8.

    Article  CAS  PubMed  Google Scholar 

  46. Lazarevic VL, et al. Relatively favorable outcome after allogeneic stem cell transplantation for BCR-ABL1-positive AML: a survey from the acute leukemia working party of the European society for blood and marrow transplantation (EBMT). Am J Hematol. 2018;93(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  47. Han JY, Theil KS. The Philadelphia chromosome as a secondary abnormality in inv(3)(q21q26) acute myeloid leukemia at diagnosis: confirmation of p190 BCR-ABL mRNA by real-time quantitative polymerase chain reaction. Cancer Genet Cytogenet. 2006;165(1):70–4.

    Article  CAS  PubMed  Google Scholar 

  48. Kakihana K, et al. Late appearance of Philadelphia chromosome with the p190 BCR/ABL chimeric transcript in acute myelogenous leukemia progressing from myelodysplastic syndrome. Rinsho Ketsueki. 2003;44(4):242–8.

    PubMed  Google Scholar 

  49. Quintás-Cardama A, et al. Association of 3q21q26 syndrome and late-appearing Philadelphia chromosome in acute myeloid leukemia. Leukemia. 2008;22(4):877–8.

    Article  PubMed  CAS  Google Scholar 

  50. Shah N, et al. Late-appearing Philadelphia chromosome in childhood acute myeloid leukemia. Pediatr Blood Cancer. 2008;50(5):1052–3.

    Article  PubMed  Google Scholar 

  51. Yagyu S, et al. Late appearance of a Philadelphia chromosome in a patient with therapy-related acute myeloid leukemia and high expression of EVI1. Cancer Genet Cytogenet. 2008;180(2):115–20.

    Article  CAS  PubMed  Google Scholar 

  52. Najfeld V, et al. Acquisition of the Ph chromosome and BCR-ABL fusion product in AML-M2 and t(8;21) leukemia: cytogenetic and FISH evidence for a late event. Leukemia. 1998;12(4):517–9.

    Article  CAS  PubMed  Google Scholar 

  53. Kurt H, et al. Secondary Philadelphia chromosome acquired during therapy of acute leukemia and myelodysplastic syndrome. Modern Pathology. 2018;31(7):1141–54.

    Article  CAS  PubMed  Google Scholar 

  54. Alotaibi AS, et al. Emergence of BCR–ABL1 fusion in AML Post–FLT3 inhibitor-based therapy: a potentially targetable mechanism of resistance – a case series. Front Oncol. 2020;10(588876):1–4.

    Google Scholar 

  55. Kiyoi H, Kawashima N, Ishikawa Y. FLT3 mutations in acute myeloid leukemia: therapeutic paradigm beyond inhibitor development. Cancer Sci. 2020;111(2):312–22.

    Article  CAS  PubMed  Google Scholar 

  56. Schnittger S. FLT3 (FMS-like tyrosine kinase 3). Atlas Genet Cytogenet Oncol Haematol. 2005;9(4):275–7.

    Google Scholar 

  57. Hu X, Chen F. Targeting on glycosylation of mutant FLT3 in acute myeloid leukemia. Hematology. 2019;24(1):651–60.

    Article  CAS  PubMed  Google Scholar 

  58. Daver N, et al. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33(2):299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Perry M, et al. FLT3-TKD mutations associated with NPM1 mutations define a favorable-risk group in patients with acute myeloid leukemia. Clin Lymphoma Myeloma Leuk. 2018;18(12):e545–50.

    Article  PubMed  Google Scholar 

  60. Murphy KM, et al. Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay. J Mol Diagn. 2003;5(2):96–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim Y, et al. Quantitative fragment analysis of FLT3-ITD efficiently identifying poor prognostic group with high mutant allele burden or long ITD length. Blood Cancer J. 2015;5:e336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Patnaik MM. The importance of FLT3 mutational analysis in acute myeloid leukemia. Leuk Lymphoma. 2018;59(10):2273–86.

    Article  CAS  PubMed  Google Scholar 

  63. Tallman MS, et al. Acute myeloid Leukemia, version 3.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2019;17(6):721–49.

    Article  CAS  Google Scholar 

  64. Yalniz F, et al. Prognostic significance of baseline FLT3-ITD mutant allele level in acute myeloid leukemia treated with intensive chemotherapy with/without sorafenib. Am J Hematol. 2019;94(9):984–91.

    Article  CAS  PubMed  Google Scholar 

  65. Abou Dalle I, et al. Impact of numerical variation, allele burden, mutation length and co-occurring mutations on the efficacy of tyrosine kinase inhibitors in newly diagnosed FLT3- mutant acute myeloid leukemia. Blood Cancer J. 2020;10(5):48.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Borthakur G, et al. Impact of numerical variation in FMS-like tyrosine kinase receptor 3 internal tandem duplications on clinical outcome in normal karyotype acute myelogenous leukemia. Cancer. 2012;118(23):5819–22.

    Article  CAS  PubMed  Google Scholar 

  67. Meshinchi S, et al. Structural and numerical variation of FLT3/ITD in pediatric AML. Blood. 2008;111(10):4930–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eguchi M, et al. Mechanisms underlying resistance to FLT3 inhibitors in acute myeloid Leukemia. Biomedicine. 2020;8(8):245.

    CAS  Google Scholar 

  69. Kottaridis PD, et al. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood. 2002;100(7):2393–8.

    Article  CAS  PubMed  Google Scholar 

  70. Levis MJ, et al. A next-generation sequencing-based assay for minimal residual disease assessment in AML patients with FLT3-ITD mutations. Blood Adv. 2018;2(8):825–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Au CH, et al. Clinical evaluation of panel testing by next-generation sequencing (NGS) for gene mutations in myeloid neoplasms. Diagn Pathol. 2016;11:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Spencer DH, et al. Detection of FLT3 internal tandem duplication in targeted, short-read-length, next-generation sequencing data. J Mol Diagn. 2013;15(1):81–93.

    Article  CAS  PubMed  Google Scholar 

  73. Falini B, et al. NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood. 2020;136(15):1707–21.

    Article  PubMed  Google Scholar 

  74. Thiede C, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 2006;107(10):4011–20.

    Article  CAS  PubMed  Google Scholar 

  75. Falini B, et al. Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications. Leukemia. 2009;23(10):1731–43.

    Article  CAS  PubMed  Google Scholar 

  76. Falini B, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352(3):254–66.

    Article  CAS  PubMed  Google Scholar 

  77. Federici L, Falini B. Nucleophosmin mutations in acute myeloid leukemia: a tale of protein unfolding and mislocalization. Protein Sci. 2013;22(5):545–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Loghavi S, et al. Clinical features of de novo acute myeloid leukemia with concurrent DNMT3A, FLT3 and NPM1 mutations. J Hematol Oncol. 2014;7:74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Cocciardi S, et al. Clonal evolution patterns in acute myeloid leukemia with NPM1 mutation. Nat Commun. 2019;10(1):2031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Schuurhuis GJ, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD working party. Blood. 2018;131(12):1275–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hafez M, et al. Performance and clinical evaluation of a sensitive multiplex assay for the rapid detection of common NPM1 mutations. J Mol Diagn. 2010;12(5):629–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Forghieri F, et al. Minimal/measurable residual disease monitoring in NPM1-mutated acute myeloid Leukemia: a clinical viewpoint and perspectives. Int J Mol Sci. 2018;19(11):3942.

    Article  CAS  Google Scholar 

  83. Ivey A, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016;374(5):422–33.

    Article  CAS  PubMed  Google Scholar 

  84. Nerlov C. C/EBPalpha mutations in acute myeloid leukaemias. Nat Rev Cancer. 2004;4(5):394–400.

    Article  CAS  PubMed  Google Scholar 

  85. Konstandin NP, et al. Genetic heterogeneity of cytogenetically normal AML with mutations of CEBPA. Blood Adv. 2018;2(20):2724–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Behdad A, et al. A clinical grade sequencing-based assay for CEBPA mutation testing: report of a large series of myeloid neoplasms. J Mol Diagn. 2015;17(1):76–84.

    Article  CAS  PubMed  Google Scholar 

  87. Green CL, et al. Prognostic significance of CEBPA mutations in a large cohort of younger adult patients with acute myeloid leukemia: impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations. J Clin Oncol. 2010;28(16):2739–47.

    Article  CAS  PubMed  Google Scholar 

  88. Wouters BJ, et al. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 2009;113(13):3088–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lin LI, et al. Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show a distinct immunophenotype of the leukemic cells. Clin Cancer Res. 2005;11(4):1372–9.

    Article  CAS  PubMed  Google Scholar 

  90. Dufour A, et al. Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol. 2010;28(4):570–7.

    Article  CAS  PubMed  Google Scholar 

  91. Taskesen E, et al. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood. 2011;117(8):2469–75.

    Article  CAS  PubMed  Google Scholar 

  92. Schlenk RF, et al. The value of allogeneic and autologous hematopoietic stem cell transplantation in prognostically favorable acute myeloid leukemia with double mutant CEBPA. Blood. 2013;122(9):1576–82.

    Article  CAS  PubMed  Google Scholar 

  93. Greif PA, et al. GATA2 zinc finger 1 mutations associated with biallelic CEBPA mutations define a unique genetic entity of acute myeloid leukemia. Blood. 2012;120(2):395–403.

    Article  CAS  PubMed  Google Scholar 

  94. Tawana K, et al. Familial CEBPA-mutated acute myeloid leukemia. Semin Hematol. 2017;54(2):87–93.

    Article  PubMed  Google Scholar 

  95. Tawana K, et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood. 2015;126(10):1214–23.

    Article  CAS  PubMed  Google Scholar 

  96. Hollink IH, et al. Characterization of CEBPA mutations and promoter hypermethylation in pediatric acute myeloid leukemia. Haematologica. 2011;96(3):384–92.

    Article  CAS  PubMed  Google Scholar 

  97. Hou HA, et al. Reply to ‘Heterogeneity within AML with CEBPA mutations; only CEBPA double mutations, but not single CEBPA mutations are associated with favorable prognosis’. Br J Cancer. 2009;101(4):738–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pabst T, et al. Heterogeneity within AML with CEBPA mutations; only CEBPA double mutations, but not single CEBPA mutations are associated with favourable prognosis. Br J Cancer. 2009;100(8):1343–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wouters BJ, et al. A recurrent in-frame insertion in a CEBPA transactivation domain is a polymorphism rather than a mutation that does not affect gene expression profiling-based clustering of AML. Blood. 2007;109(1):389–90.

    Article  CAS  PubMed  Google Scholar 

  100. Ng CWS, et al. CEBPA mutational analysis in acute myeloid leukaemia by a laboratory-developed next-generation sequencing assay. J Clin Pathol. 2018;71(6):522–31.

    Article  CAS  PubMed  Google Scholar 

  101. Prokocimer M, Molchadsky A, Rotter V. Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood. 2017;130(6):699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Welch JS. Patterns of mutations in TP53 mutated AML. Best Pract Res Clin Haematol. 2018;31(4):379–83.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hou HA, et al. TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution. Blood Cancer J. 2015;5(7):e331.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Jaiswal S, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Xie M, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wong TN, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015;518(7540):552–5.

    Article  CAS  PubMed  Google Scholar 

  107. Kadia TM, et al. TP53 mutations in newly diagnosed acute myeloid leukemia: clinicomolecular characteristics, response to therapy, and outcomes. Cancer. 2016;122(22):3484–91.

    Article  CAS  PubMed  Google Scholar 

  108. Wang W, et al. Pure erythroid leukemia. Am J Hematol. 2017;92(3):292–6.

    Article  PubMed  Google Scholar 

  109. Asghari H, Talati C. Tumor protein 53 mutations in acute myeloid leukemia: conventional induction chemotherapy or novel therapeutics. Curr Opin Hematol. 2020;27(2):66–75.

    Article  CAS  PubMed  Google Scholar 

  110. Chang CK, et al. TP53 mutations predict decitabine-induced complete responses in patients with myelodysplastic syndromes. Br J Haematol. 2017;176(4):600–8.

    Article  CAS  PubMed  Google Scholar 

  111. Welch JS, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med. 2016;375(21):2023–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Aldoss I, et al. Venetoclax and hypomethylating agents in TP53-mutated acute myeloid leukaemia. Br J Haematol. 2019;187(2):e45–8.

    Article  PubMed  PubMed Central  Google Scholar 

  113. DiNardo CD, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Morita K, et al. Clearance of somatic mutations at remission and the risk of relapse in acute myeloid Leukemia. J Clin Oncol. 2018;36(18):1788–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kotler E, et al. A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Molecular Cell. 2018;71(1) 178–190.e8

    Google Scholar 

  116. Fernandez-Pol S, et al. Immunohistochemistry for p53 is a useful tool to identify cases of acute myeloid leukemia with myelodysplasia-related changes that are TP53 mutated, have complex karyotype, and have poor prognosis. Mod Pathol. 2017;30(3):382–92.

    Article  CAS  PubMed  Google Scholar 

  117. McGraw KL, et al. Immunohistochemical pattern of p53 is a measure of TP53 mutation burden and adverse clinical outcome in myelodysplastic syndromes and secondary acute myeloid leukemia. Haematologica. 2016;101(8):e320–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Ruzinova MB, et al. TP53 immunohistochemistry correlates with TP53 mutation status and clearance in decitabine-treated patients with myeloid malignancies. Haematologica. 2019;104(8):e345–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Soussi T, Leroy B, Taschner PE. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum Mutat. 2014;35(6):766–78.

    Article  CAS  PubMed  Google Scholar 

  120. Ito Y, Bae SC, Chuang LS. The RUNX family: developmental regulators in cancer. Nat Rev Cancer. 2015;15(2):81–95.

    Article  CAS  PubMed  Google Scholar 

  121. Schnittger S, et al. RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood. 2011;117(8):2348–57.

    Article  CAS  PubMed  Google Scholar 

  122. Yokota A, et al. The clinical, molecular, and mechanistic basis of RUNX1 mutations identified in Hematological malignancies. Mol Cells. 2020;43(2):145–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies. Blood. 2017;129(15):2070–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bellissimo DC, Speck NA. RUNX1 mutations in inherited and sporadic Leukemia. Front Cell Dev Biol. 2017;5:111.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Khan M, et al. Clinical outcomes and co-occurring mutations in patients with RUNX1-mutated acute myeloid leukemia. Int J Mol Sci. 2017;18(8):1–15.

    Article  CAS  Google Scholar 

  126. Hayashi Y, et al. Myeloid neoplasms with germ line RUNX1 mutation. Int J Hematol. 2017;106(2):183–8.

    Article  CAS  PubMed  Google Scholar 

  127. Roberts I, et al. GATA1-mutant clones are frequent and often unsuspected in babies with down syndrome: identification of a population at risk of leukemia. Blood. 2013;122(24):3908–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ling T, Crispino JD. GATA1 mutations in red cell disorders. IUBMB Life. 2020;72(1):106–18.

    Article  CAS  PubMed  Google Scholar 

  129. Halsey C, et al. The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells. J Hematol Oncol. 2012;5:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Garnett C, Cruz Hernandez D, Vyas P. GATA1 and cooperating mutations in myeloid leukaemia of down syndrome. IUBMB Life. 2020;72(1):119–30.

    Article  CAS  PubMed  Google Scholar 

  131. Yoshida K, et al. The landscape of somatic mutations in down syndrome-related myeloid disorders. Nat Genet. 2013;45(11):1293–9.

    Article  CAS  PubMed  Google Scholar 

  132. Labuhn M, et al. Mechanisms of progression of myeloid preleukemia to transformed myeloid leukemia in children with down syndrome. Cancer Cell, 2019. 36(2) 123–138.e10

    Google Scholar 

  133. Bacher U, et al. Multilineage dysplasia does not influence prognosis in CEBPA-mutated AML, supporting the WHO proposal to classify these patients as a unique entity. Blood. 2012;119(20):4719–22.

    Article  CAS  PubMed  Google Scholar 

  134. Falini B, et al. Multilineage dysplasia has no impact on biologic, clinicopathologic, and prognostic features of AML with mutated nucleophosmin (NPM1). Blood. 2010;115(18):3776–86.

    Article  CAS  PubMed  Google Scholar 

  135. Arber DA, et al. Acute myeloid leukaemia with myelodysplasia-related change. In: Swerdlow S, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2017. p. 150–2.

    Google Scholar 

  136. Koenig KL, et al. AML with myelodysplasia-related changes: development, challenges, and treatment advances. Genes (Basel). 2020;11(8):845.

    Article  CAS  Google Scholar 

  137. Viehmann S, et al. Monitoring of minimal residual disease (MRD) by real-time quantitative reverse transcription PCR (RQ-RT-PCR) in childhood acute myeloid leukemia with AML1/ETO rearrangement. Leukemia. 2003;17(6):1130–6.

    Article  CAS  PubMed  Google Scholar 

  138. Schnittger S, et al. Minimal residual disease levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML. Blood. 2009;114(11):2220–31.

    Article  CAS  PubMed  Google Scholar 

  139. Inaba H, et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol. 2012;30(29):3625–32.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sanz MA, et al. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood. 2019;133(15):1630–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Goswami M, et al. A multigene array for measurable residual disease detection in AML patients undergoing SCT. Bone Marrow Transplant. 2015;50(5):642–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ravandi F, Walter RB, Freeman SD. Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv. 2018;2(11):1356–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tomlinson B, Lazarus HM. Enhancing acute myeloid leukemia therapy - monitoring response using residual disease testing as a guide to therapeutic decision-making. Expert Rev Hematol. 2017;10(6):563–74.

    Article  CAS  PubMed  Google Scholar 

  144. Varella-Garcia M, et al. Minimal residual disease (MRD) in remission t(8;21) AML and in vivo differentiation detected by FISH and CD34+ cell sorting. Leukemia. 2001;15(9):1408–14.

    Article  CAS  PubMed  Google Scholar 

  145. Sexauer A, et al. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML. Blood. 2012;120(20):4205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ossenkoppele G, Schuurhuis GJ. MRD in AML: does it already guide therapy decision-making? Hematology Am Soc Hematol Educ Program. 2016;2016(1):356–65.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Voso MT, et al. MRD in AML: the role of new techniques. Front Oncol. 2019;9:655.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Crowgey EL, et al. Error-corrected sequencing strategies enable comprehensive detection of leukemic mutations relevant for diagnosis and minimal residual disease monitoring. BMC Med Genet. 2020;13(1):32.

    CAS  Google Scholar 

  149. Jongen-Lavrencic M, et al. Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med. 2018;378(13):1189–99.

    Article  CAS  PubMed  Google Scholar 

  150. Hartmann L, Metzeler KH. Clonal hematopoiesis and preleukemia – genetics, biology, and clinical implications. Genes Chromosomes Cancer. 2019;58(12):828–38.

    Google Scholar 

  151. Debarri H, et al. IDH1/2 but not DNMT3A mutations are suitable targets for minimal residual disease monitoring in acute myeloid leukemia patients: a study by the acute Leukemia French association. Oncotarget. 2015;6(39):42345–53.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Lane S, et al. A >or=1 log rise in RQ-PCR transcript levels defines molecular relapse in core binding factor acute myeloid leukemia and predicts subsequent morphologic relapse. Leuk Lymphoma. 2008;49(3):517–23.

    Article  CAS  PubMed  Google Scholar 

  153. Yin JA, et al. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood. 2012;120(14):2826–35.

    Article  CAS  PubMed  Google Scholar 

  154. Ommen HB, et al. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood. 2010;115(2):198–205.

    Article  CAS  PubMed  Google Scholar 

  155. Ommen HB, et al. Relapse kinetics in acute myeloid leukaemias with MLL translocations or partial tandem duplications within the MLL gene. Br J Haematol. 2014;165(5):618–28.

    Article  CAS  PubMed  Google Scholar 

  156. Swerdlow SH. World health organization, and international agency for research on cancer. In: World Health Organization classification of tumours, editors, editor. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: International Agency for Research on Cancer; 2017. 585 pages.

    Google Scholar 

  157. Gaidzik VI, et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol. 2011;29(10):1364–72.

    Article  PubMed  Google Scholar 

  158. Mendler JH, et al. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures. J Clin Oncol. 2012;30(25):3109–18.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Tang JL, et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood. 2009;114(26):5352–61.

    Article  CAS  PubMed  Google Scholar 

  160. Gabert J, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe against Cancer program. Leukemia. 2003;17(12):2318–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linsheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, G., Zhang, L. (2021). Acute Myeloid Leukemia. In: Ding, Y., Zhang, L. (eds) Practical Oncologic Molecular Pathology. Practical Anatomic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-73227-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73227-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73226-4

  • Online ISBN: 978-3-030-73227-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics