Skip to main content

Sex Hormone Disturbances in Athletes: Implications for Voice

  • Chapter
  • First Online:
Voice Disorders in Athletes, Coaches and other Sports Professionals

Abstract

Sex hormone disturbances are very common in athletes, the most frequent of which is hyperandrogenism. The high prevalence of hyperandrogenism is due mostly to the high prevalence of polycystic ovary syndrome (PCOS) among female athletes, and the high intake of anabolic-androgenic steroids in athletes in general. Other rare causes include disorders in sex differentiation. Athletes with hyperandrogenism have a competitive advantage over athletes with a normal androgen level. The improvement in physical strength and exercise endurance is due primarily to the hypertrophic myogenic effect of testosterone. Female athletes with hyperandrogenism suffer from adverse events such as athletic amenorrhea, hirsutism, male baldness, and change in voice quality. Dysphonia in affected patients is described as deepening of the voice, voice breaks, and voice instability. These voice changes are attributed to functional and structural laryngeal changes, the most common of which are an increase in muscle tissue versus connective tissue ratio, muscle incoordination, and proprioceptive dysfunction with impairment in muscle memory.

This chapter reviews the hormonal dichotomy in athletes with an emphasis on the endogenous and exogenous causes of hyperandrogenism. The impact of hyperandrogenism on voice and the pathophysiology of the androgenic voice in female athletes are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sataloff RT. Endocrine function. In: Sataloff RT. Professional voice. The science and art of clinical care. 4th ed. San Diego: Plural Publishing; 2017. p. 655–69.

    Google Scholar 

  2. West JB. Best and Taylor’s physiological basis of medical practice, 12th edition. Baltimore: Williams & Wilkins;1991.

    Google Scholar 

  3. Hirschberg AL. Female hyperandrogenism and elite sport. Endocr Connect. 2020;9(4):R81–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Davis SR, Wahlin-Jacobsen S. Testosterone in women—the clinical significance. Lancet Diabetes Endocrinol. 2015;3(12):980–92.

    Article  CAS  PubMed  Google Scholar 

  5. Handelsman DJ, Hirschberg AL, Bermon S. Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocr Rev. 2018;39(5):803–29.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mooradian AD, Morley JE, Korenman SG. Biological actions of androgens. Endocr Rev. 1987;8(1):1–28.

    Article  CAS  PubMed  Google Scholar 

  7. Notelovitz M. Androgen effects on bone and muscle. Fertil Steril. 2002;77:34–41.

    Article  Google Scholar 

  8. Herbst KL, Bhasin S. Testosterone action on skeletal muscle. Curr Opin Clin Nutr Metab Care. 2004;7(3):271–7.

    Article  CAS  PubMed  Google Scholar 

  9. Mänttäri S, Anttila K, Järvilehto M. Testosterone stimulates myoglobin expression in different muscles of the mouse. J Comp Physiol B. 2008;178(7):899–907.

    Article  PubMed  CAS  Google Scholar 

  10. Almeida M, Laurent MR, Dubois V, et al. Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev. 2017;97(1):135–87.

    Article  PubMed  Google Scholar 

  11. Bermon S. Androgens and athletic performance of elite female athletes. Curr Opin Endocrinol Diabetes Obes. 2017;24(3):246–51.

    Article  CAS  PubMed  Google Scholar 

  12. Bermon S, Garnier PY. Serum androgen levels and their relation to performance in track and field: mass spectrometry results from 2127 observations in male and female elite athletes. Br J Sports Med. 2017;51(17):1309–14.

    Article  PubMed  Google Scholar 

  13. Cook CJ, Crewther BT, Smith AA. Comparison of baseline free testosterone and cortisol concentrations between elite and non-elite female athletes. Am J Hum Biol. 2012;24(6):856–8.

    Article  PubMed  Google Scholar 

  14. Bermon S, Garnier PY, Hirschberg AL, et al. Serum androgen levels in elite female athletes. J Clin Endocrinol Metab. 2014;99(11):4328–35.

    Article  CAS  PubMed  Google Scholar 

  15. Loucks AB, Mortola JF, Girton L, Yen SS. Alterations in the hypothalamic-pituitary-ovarian and the hypothalamic-pituitary-adrenal axes in athletic women. J Clin Endocrinol Metab. 1989;68(2):402–11.

    Article  CAS  PubMed  Google Scholar 

  16. Laughlin GA, Yen SS. Nutritional and endocrine-metabolic aberrations in amenorrheic athletes. J Clin Endocrinol Metab. 1996;81(12):4301–9.

    CAS  PubMed  Google Scholar 

  17. Orio F, Muscogiuri G, Ascione A, et al. Effects of physical exercise on the female reproductive system. Minerva Endocrinol. 2013;38(3):305–19.

    CAS  PubMed  Google Scholar 

  18. Hirschberg AL. Sport and menses. In: Huhtaniemi L, Martini I, editors. Encyclopedia of endocrine diseases, vol. 2. 2nd ed. Oxford, UK: Academic Press; 2019. p. 461–70.

    Chapter  Google Scholar 

  19. Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol. 1998;84:37–46.

    Article  CAS  PubMed  Google Scholar 

  20. Hagmar M, Hirschberg AL, Berglund L, Berglund B. Special attention to the weight control strategies employed by Olympic athletes striving for leanness is required. Clin J Sport Med. 2008;18:5–9.

    Article  PubMed  Google Scholar 

  21. Sheid JL, De Souza MJ. Menstrual irregularities and energy deficiency in physically active women: the role of ghrelin, PYY and adipocytokines. Med Sport Sci. 2010;55:82–102.

    Article  Google Scholar 

  22. Mircea CN, Lujan ME, Pierson RA. Metabolic fuel and clinical implications for female reproduction. J Obstet Gynaecol Can. 2007;29:887–902.

    Article  PubMed  Google Scholar 

  23. Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88:297–311.

    Article  CAS  PubMed  Google Scholar 

  24. Javed A, Kashyap R, An L. Hyperandrogenism in female athletes with functional hypothalamic amenorrhea: a distinct phenotype. Int J Womens Health. 2015;7:103.

    PubMed  PubMed Central  Google Scholar 

  25. Reed JL, De Souza MJ, Mallison RJ, et al. Energy availability discriminates clinical menstrual status in exercising women. J Int Soc Sports Nutr. 2015;12:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25.

    Article  Google Scholar 

  27. Dokras A, Witchel SF. Are young adult women with polycystic ovary syndrome slipping through the healthcare cracks? J Clin Endocrinol Metab. 2014;99(5):1583–5.

    Article  CAS  PubMed  Google Scholar 

  28. Azziz R, Sanchez LA, Knochenhauer ES, et al. Androgen excess in women: experience with over 1000 consecutive patients. J Clin Endocrinol Metab. 2004;89(2):453–62.

    Article  CAS  PubMed  Google Scholar 

  29. Lowe P, Kovacs G, Howlett D. Incidence of polycystic ovaries and polycystic ovary syndrome amongst women in Melbourne, Australia. Aust N Z J Obstet Gynaecol. 2005;45:17–9.

    Article  PubMed  Google Scholar 

  30. Hagmar M, Berglund B, Brismar K, Hirschberg A. Hyperandrogenism may explain reproductive dysfunction in olympic athletes. Med Sci Sports Exerc. 2009;41(6):1241–8.

    Article  PubMed  Google Scholar 

  31. Coste O, Paris F, Galtier F, Letois F, Maïmoun L, Sultan C. Polycystic ovary-like syndrome in adolescent competitive swimmers. Fertil Steril. 2011;96:1037–42.

    Article  CAS  PubMed  Google Scholar 

  32. Burger HG. Androgen production in women. Fertil Steril. 2002;77:3–5.

    Article  Google Scholar 

  33. Guzelce EC, Eyupoglu D, Torgutalp S, et al. Is muscle mechanical function altered in polycystic ovary syndrome? Arch Gynecol Obstet. 2019;300(3):771–6.

    Article  CAS  Google Scholar 

  34. Lee PA, Nordenström A, Houk CP, et al. Global disorders of sex development update since 2006: perceptions, approach and care. Horm Res Paediatr. 2016;85(3):158–80.

    Article  CAS  PubMed  Google Scholar 

  35. Linden-Hirschberg A. The role of androgens for body composition and physical performance in women. In: Berga S, Genazzani A, Naftolin F, Petraglia F, editors. Menstrual cycle related disorders. ISGE series. Cham: Springer; 2019. https://doi.org/10.1007/987-3-030-14358-9_4.

    Chapter  Google Scholar 

  36. Vingren JL, Kraemer WJ, Ratamess NA, Anderson JM, Volek JS, Maresh CM. Testosterone physiology in resistance exercise and training. Sports Med. 2010;40(12):1037–53.

    Article  PubMed  Google Scholar 

  37. Croson R, Gneezy U. Gender differences in preferences. J Econ Litererat. 2009;47(2):448–74.

    Article  Google Scholar 

  38. Greer JB, Modugno F, Allen GO, Ness RB. Androgenic progestins in oral contraceptives and the risk of epithelial ovarian cancer. Obstet Gynecol. 2005;105:731–40.

    Article  CAS  PubMed  Google Scholar 

  39. Fotherby K. Bioavailability of orally administered sex steroids used in oral contraception and hormone replacement therapy. Contraception. 1996;54:59–69.

    Article  CAS  PubMed  Google Scholar 

  40. Brynhildsen J, Lennartsson H, Klemetz M, Dahlquist P, Hedin B, Hammar M. Oral contraceptive use among female elite athletes and age-matched controls and its relation to low back pain. Acta Obstet Gynecol Scand. 1997;76(9):873–8.

    Article  CAS  PubMed  Google Scholar 

  41. Martin D, Sale C, Cooper SB, Eliott-Sale KJ. Period prevalence and perceived side effects of hormonal contraceptive use and the menstrual cycle in elite athletes. Int J Sports Physiol Perform. 2018;13(7):926–32.

    Article  PubMed  Google Scholar 

  42. Rechichi C, Dawson B, Goodman C. Athletic performance and the oral contraceptive. Int J Sports Physiol Perform. 2009;4(2):151–62.

    Article  PubMed  Google Scholar 

  43. Bonen A, Haynes FW, Graham TE. Substrate and hormonal responses to exercise in women using oral contraceptives. J Appl Physiol. 1991;70(5):1917–27.

    Article  CAS  PubMed  Google Scholar 

  44. Bemben DA, Boileau RA, Bahr JM, Nelson RA, Misner JE. Effects of oral contraceptives on hormonal and metabolic responses during exercise. Med Sci Sports Exerc. 1992;24(4):434–41.

    Article  CAS  PubMed  Google Scholar 

  45. Casazza GA, Jacobs KA, Suh SH, Miller BF, Horning MA, Brooks GA. Menstrual cycle phase and oral contraceptive effects on triglyceride mobilization during exercise. J Appl Physiol. 2004;97:302–9.

    Article  CAS  PubMed  Google Scholar 

  46. McNeill AW, Mozingo E. Changes in the metabolic cost of standardized work associated with the use of an oral contraceptive. J Sports Med Phys Fitness. 1981;21(3):238–44.

    CAS  PubMed  Google Scholar 

  47. Spellacy WN. Carbohydrate metabolism during treatment with estrogen, progestogen, and low-dose oral contraceptives. Am J Obstet Gynecol. 1982;142(6):732–4.

    Article  CAS  PubMed  Google Scholar 

  48. Suh SH, Casazza GA, Horning MA, Miller BF, Brooks GA. Effects of oral contraceptives on glucose flux and substrate oxidation rates during rest and exercise. J Appl Physiol. 2003;94(1):285–94.

    Article  CAS  PubMed  Google Scholar 

  49. Casazza GA, Suh SH, Miller BF, Navazio FM, Brooks GA. Effects of oral contraceptives on peak exercise capacity. J Appl Physiol. 2002;93(5):1698–702.

    Article  CAS  PubMed  Google Scholar 

  50. Notelovitz M, Zauner C, McKenzie L, Suggs Y, Fields C, Kitchens C. The effect of low-dose oral contraceptives on cardiorespiratory function, coagulation, and lipids in exercising young women: a preliminary report. Am J Obstet Gynecol. 1987;156(3):591–8.

    Article  CAS  PubMed  Google Scholar 

  51. Lebrun CM, Petit MA, McKenzie DC, Taunton JE, Prior JC. Decreased maximal aerobic capacity with use of a triphasic oral contraceptive in highly active women: a randomised controlled trial. Br J Sports Med. 2003;37(4):315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Giacomoni M, Falgairette G. Decreased submaximal oxygen uptake during short duration oral contraceptive use: a randomized cross-over trial in premenopausal women. Ergonomics. 2000;43(10):1559–70.

    Article  CAS  PubMed  Google Scholar 

  53. England SE, Fahri LE. Fluctuations in alveolar CO2 and in base excess during the menstrual cycle. Respir Physiol. 1976;26:157–61.

    Article  CAS  PubMed  Google Scholar 

  54. Reilly T, Whitley H. Effects of menstrual cycle phase and oral contraceptive use on endurance exercise. J Sports Sci. 1994;2:150.

    Google Scholar 

  55. Bryner RW, Toffle RC, Ullrich IH, Yeater RA. Effect of low dose oral contraceptives on exercise performance. Br J Sports Med. 1996;30:36–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Baker J. A report on alterations to the speaking and singing voices of four women following hormonal therapy with virilizing agents. J Voice. 1999;13:496–507.

    Article  CAS  PubMed  Google Scholar 

  57. Gerritsma EJ, Brocaar MP, Hakkesteegt MM, Birkenhager JC. Virilization of the voice in postmenopausal women due to the anabolic steroid nandrolone decanoate (Deca-Durabolin). The effects of medication for one year. Clin Otolaryngol. 1994;19:79–84.

    Article  CAS  PubMed  Google Scholar 

  58. Spooner JB. Classification of side effects to danazol therapy. J Int Med Res. 1997;5:15–7.

    Google Scholar 

  59. Hardt W. Clinically relevant side effects of danazol. Orynakol Prax. 1987;11:457–70.

    Google Scholar 

  60. Dmowski WP. Endocrine properties and clinical application of danazol. Fertil Steril. 1979;31(3):237.

    Article  CAS  PubMed  Google Scholar 

  61. Boothroyd CV, Lepre F. Permanent voice change resulting from danazol therapy. Aus N Z J Obstet Gynaecol. 1990;30:275–6.

    Article  CAS  Google Scholar 

  62. Barbieri RL, Evans S, Kistner RW. Danazol in the treatment of endometriosis: analysis of 100 cases with a 4-year follow-up. Fertil Steril. 1982;37:737–46.

    Article  CAS  PubMed  Google Scholar 

  63. Achilli C, Pundir J, Ramanathan P, Sabatini L, Hamoda H, Panay N. Efficacy and safety of transdermal testosterone in postmenopausal women with hypoactive sexual desire disorder: a systematic review and meta-analysis. Fertil Steril. 2017;107(2):475–82.

    Article  CAS  PubMed  Google Scholar 

  64. Cappola AR, Ratcliffe SJ, Bhasin S, et al. Determinants of serum total and free testosterone levels in women over the age of 65 years. J Clin Endocrinol Metab. 2007;92(2):509–16.

    Article  CAS  PubMed  Google Scholar 

  65. Laughlin GA, Barrett-Connor E, Kritz-Silverstein D, von Mühlen D. Hysterectomy, oophorectomy, and endogenous sex hormone levels in older women: the Rancho Bernardo Study. J Clin Endocrinol Metab. 2000;85(2):645–51.

    CAS  PubMed  Google Scholar 

  66. Tajar A, Huhtaniemi IT, O’Neill TW, et al. Characteristics of androgen deficiency in late-onset hypogonadism: results from the European Male Aging Study (EMAS). J Clin Endocrinol Metab. 2012;97(5):1508–16.

    Article  CAS  PubMed  Google Scholar 

  67. Araujo AB, Esche GR, Kupelian V, et al. Prevalence of symptomatic androgen deficiency in men. J Clin Endocrinol Metab. 2007;92(11):4241–7.

    Article  CAS  PubMed  Google Scholar 

  68. Hamdan AL, Sataloff RT, Hawkshaw MJ. Laryngeal manifestations of endocrine disorders. In: Hamdan AL, Sataloff RT, Hawkshaw MJ. Laryngeal manifestations of systemic diseases. San Diego: Plural Publishing; 2018. p. 313–40.

    Google Scholar 

  69. Albertson TE, Chenoweth JA, Colby DK, Sutter ME. The changing drug culture: use and misuse of appearance- and performance-enhancing drugs. FP Essent. 2016;441:30–43.

    PubMed  Google Scholar 

  70. Barceloux DG, Palmer RB. Anabolic-androgenic steroids. Dis Mon. 2013;59:226–48.

    Article  PubMed  Google Scholar 

  71. Pope HG Jr, Kanayama G, Athey A, Ryan E, Hudson JI, Baggish A. The lifetime prevalence of anabolic-androgenic steroid use and dependence in Americans: current best estimates. Am J Addict. 2014;23(4):371–7.

    Article  PubMed  Google Scholar 

  72. Monaghan L. Creating “The perfect body”: a variable project. Body Soc. 1999;5:267–90.

    Article  Google Scholar 

  73. Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004;34(8):513–54.

    Article  PubMed  Google Scholar 

  74. Christou GA, Chtristou MA, Ziberna L, Christou KA. Indirect clinical markers for the direction of anabolic steroid abuse beyond the conventional doping control in athletes. Eur J Sport Sci. 2019;19(9):1276–86.

    Article  PubMed  Google Scholar 

  75. Kersey RD, Elliot DL, Goldberg L, et al. National Athletic Trainers’ association. National Athletic Trainers’ association position statement: anabolic-androgenic steroids. J Athl Train. 2012;47:567–88.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Newman SR, Butler J, Hammond EH, et al. Preliminary report on hormone receptors in the human vocal fold. J Voice. 2000;14:72–81.

    Article  CAS  PubMed  Google Scholar 

  77. Voelter C, Kleinsasser N, Joa P, Nowack I, Martinez R, Hagen R, Voelker HU. Detection of hormone receptors in the human vocal fold. Eur Arch Otorhinolaryngol. 2008;265:1239–44.

    Article  PubMed  Google Scholar 

  78. Verma A, Schwartz N, Cohen DJ, Boyan BD, Schwartz Z. Estrogen signaling and estrogen receptors as prognostic indicators in laryngeal cancer. Steroids. 2019;152:108498.

    Article  CAS  PubMed  Google Scholar 

  79. Abitbol J, Abitbol P, Abitbol B. Sex hormones and the female voice. J Voice. 1999;13(3):424–46.

    Article  CAS  PubMed  Google Scholar 

  80. Shoffel-Havakuk H, Carmel-Neiderman NN, Halperin D, et al. Menstrual cycle, vocal performance, and laryngeal vascular appearance: an observational study on 17 subjects. J Voice. 2018;32(2):226–33.

    Article  PubMed  Google Scholar 

  81. Vuorenkoski V, Lenko HL, Tjernlund PE, Vuorenkoski L, Perheentupa J. Fundamental voice frequency during normal and abnormal growth, and after androgen treatment. Arch Dis Child. 1978;53(3):201–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Emmanuel M, Bokor BR. Tanner stages. In: StatPearls. Treasure Island: StatPearls Publishing; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470280/. Updated 22 Aug 2020. Accessed 15 Nov 2020.

    Google Scholar 

  83. Harries ML, Walker JM, Williams DM, Hawkins S, Hughes IA. Changes in the male voice at puberty. Arch Dis Child. 1997;77(5):445–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pedersen MF, Møller S, Krabbe S, Bennett P. Fundamental voice frequency measured by electroglottography during continuous speech. A new exact secondary sex characteristic in boys in puberty. Int J Pediatr Otorhinolaryngol. 1986;11(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  85. Akcam T, Bolu E, Merati AL, Durmus C, Gerek M, Ozkaptan Y. Voice changes after androgen therapy for hypogonadotrophic hypogonadism. Laryngoscope. 2004;114(9):1587–91.

    Article  CAS  PubMed  Google Scholar 

  86. King A, Ashby J, Nelson C. Effects of testosterone replacement on a male professional singer. J Voice. 2001;15(4):553–7.

    Article  CAS  PubMed  Google Scholar 

  87. Hannoun A, Zreik T, Husseini ST, Mahfoud L, Sibai A, Hamdan AL. Vocal changes in patients with polycystic ovary syndrome. J Voice. 2011;25(4):501–4.

    Article  PubMed  Google Scholar 

  88. Gugatschka M, Lichtenwagner S, Schwetz V, et al. Subjective and objective vocal parameters in women with polycystic ovary syndrome. J Voice. 2013;27(1):98–100.

    Article  PubMed  Google Scholar 

  89. Aydin K, Akbulut S, Demir MG, et al. Voice characteristics associated with polycystic ovary syndrome. Laryngoscope. 2016;126(9):2067–72.

    Article  CAS  PubMed  Google Scholar 

  90. Lã FM, Howard DM, Ledger W, Davidson JW, Jones G. Oral contraceptive pill containing drospirenone and the professional voice: an electrolaryngographic analysis. Logoped Phoniatr Vocol. 2009;34(1):11–9.

    Article  PubMed  Google Scholar 

  91. Lã FM, Ledger WL, Davidson JW, Howard DM, Jones GL. The effects of a third generation combined oral contraceptive pill on the classical singing voice. J Voice. 2007;21(6):754–61.

    Article  PubMed  Google Scholar 

  92. Van Lierde KM, Claeys S, De Bodt M, Van Cauwenberge P. Response of the female vocal quality and resonance in professional voice users taking oral contraceptive pills: a multiparameter approach. Laryngoscope. 2006;116(10):1894–8.

    Article  PubMed  Google Scholar 

  93. Meurer EM, Fontoura GV, von Eye Corleta H, Capp E. Speech articulation of low-dose oral contraceptive users. J Voice. 2015;29(6):743–50.

    Article  PubMed  Google Scholar 

  94. Meurer EM, Moura AD, Rechenberg L, von Eye Corleta H, Capp E. Vocal range in the speech of users of low-dose oral contraceptives. J Voice. 2017;31(3):390–e17.

    Article  PubMed  Google Scholar 

  95. Gorham-Rowan M, Fowler L. Aerodynamic assessment of young women’s voices as a function of oral contraceptive use. Folia Phoniatr Logop. 2008;60(1):20–4.

    Article  PubMed  Google Scholar 

  96. Rodney JP, Sataloff RT. The effects of hormonal contraception on the voice: history of its evolution in the literature. J Voice. 2016;30:726–30.

    Article  PubMed  Google Scholar 

  97. Nordenskjöld F, Fex S. Vocal effects of danazol therapy: a preliminary report. Acta Obstet Gynecol Scand Suppl. 1984;123:131–2.

    Article  PubMed  Google Scholar 

  98. Wollina U, Pabst F, Schönlebe J, Abdel-Naser MB, et al. Side-effects of topical androgenic and anabolic substances and steroids. A short review. Acta Dermatovenerol Alp Panonica Adriat. 2007;16(3):117–22.

    CAS  Google Scholar 

  99. Wardle PG, Whitehead MI, Mills RP. Non-reversible and wide ranging voice changes after treatment with danazol. Br Med J (Clin Res Ed). 1983;287(6397):946.

    Article  CAS  Google Scholar 

  100. Huang G, Pencina KM, Coady JA, Beleva YM, Bhasin S, Basaria S. Functional voice testing detects early changes in vocal pitch in women during testosterone administration. J Clin Endocrinol Metab. 2015;100(6):2254–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Strauss RH, Liggett MT, Lanese RR. Anabolic steroid use and perceived effects in ten weight-trained women athletes. JAMA. 1985;253(19):2871–3.

    Article  CAS  PubMed  Google Scholar 

  102. Ray S, Masood A, Pickles J, Moumoulidis I. Severe laryngitis following chronic anabolic steroid abuse. J Laryngol Otol. 2008;122(3):230–2.

    Article  CAS  PubMed  Google Scholar 

  103. Tobias ML, Marin ML, Kelley DB. The roles of sex, innervation, and androgen in laryngeal muscle of Xenopus laevis. J Neurosci. 1993;13(1):324–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sassoon D, Segil N, Kelley D. Androgen-induced myogenesis and chondrogenesis in the larynx of Xenopus laevis. Dev Biol. 1986;113(1):135–40.

    Article  CAS  PubMed  Google Scholar 

  105. Talaat M, Angelo A, Talaat AM, Elwany S, Kelada I, Thabet H. Histologic and histochemical study of effects of anabolic steroids on the female larynx. Ann Otol Rhinol Laryngol. 1987;96(4):468–71.

    Article  CAS  PubMed  Google Scholar 

  106. Beckford NS, Schaid D, Rood SR, Schanbacher B. Androgen stimulation and laryngeal development. Ann Otol Rhinol Laryngol. 1985;94(6):634–40.

    Article  CAS  PubMed  Google Scholar 

  107. Griggs RC, Kingston WI, Jozefowicz RF, Herr BE, Forbes GI, Halliday DA. Effect of testosterone on muscle mass and muscle protein synthesis. J Appl Physiol. 1989;66(1):498–503.

    Article  CAS  PubMed  Google Scholar 

  108. Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med. 1996;335(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  109. Stinnett S, Chmielewska M, Akst LM. Update on management of hoarseness. Med Clin North Am. 2018;102(6):1027–40.

    Article  PubMed  Google Scholar 

  110. Stewart L, Oates J, O’Halloran P. “My voice is my identity”: the role of voice for trans women’s participation in sport. J Voice. 2020;34(1):78–87.

    Article  PubMed  Google Scholar 

  111. McNeill EJ. Management of the transgender voice. J Laryngol Otol. 2006;120(7):521–3.

    Article  CAS  PubMed  Google Scholar 

  112. Nolan IT, Morrison SD, Arowojolu O, Crowe CS, Massie JP, Adler RK, Chaiet SR, Francis DO. The role of voice therapy and phonosurgery in transgender vocal feminization. J Craniofac Surg. 2019;30(5):1368–75.

    Article  PubMed  Google Scholar 

  113. Guice CE, LeJeune FE, Samuels PM. Early experiences with vocal ligament tightening. Ann Otol Rhinol Laryngol. 1983;92(5):475–7.

    Article  PubMed  Google Scholar 

  114. Tucker HM. Anterior commissure laryngoplasty for adjustment of vocal fold tension. Ann Otol Rhinol Laryngol. 1985;94(6):547–9.

    Article  CAS  PubMed  Google Scholar 

  115. Thomas JP, MacMillan C. Feminization laryngoplasty: assessment of surgical pitch elevation. Eur Arch Otorhinolaryngol. 2013;270(10):2695–700.

    Article  PubMed  Google Scholar 

  116. Song TE, Jiang N. Transgender phonosurgery: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2017;156(5):803–8.

    Article  PubMed  Google Scholar 

  117. Kitajima K, Tanabe M, Isshiki N. Cricothyroid distance and vocal pitch: experimental surgical study to elevate the vocal pitch. Ann Otol Rhinol Laryngol. 1979;88(1):52–5.

    Article  CAS  PubMed  Google Scholar 

  118. Yang CY, Palmer AD, Meltzer TR, Murray KD, Cohen JI. Cricothyroid approximation to elevate vocal pitch in male-to-female transsexuals: results of surgery. Ann Otol Rhinol Laryngol. 2002;111(6):477–85.

    Article  PubMed  Google Scholar 

  119. Heuer RJ, Baroody MM, Sataloff RT. Management of gender reassignment patients. In: Sataloff RT. Professional voice: the science and art of clinical care. 4th ed. San Diego: Plural Publication; 2017. p. 1649–57.

    Google Scholar 

  120. Neumann K, Welzel C. The importance of the voice in male-to-female transsexualism. J Voice. 2004;18(1):153–67.

    Article  PubMed  Google Scholar 

  121. Anderson JA. Pitch elevation in trangendered patients: anterior glottic web formation assisted by temporary injection augmentation. J Voice. 2014;28(6):816–21.

    Article  PubMed  Google Scholar 

  122. Donald PJ. Voice change surgery in the transsexual. Head Neck Surg. 1982;4(5):433–7.

    Article  CAS  PubMed  Google Scholar 

  123. Kunachak S, Prakunhungsit S, Sujjalak K. Thyroid cartilage and vocal fold reduction: a new phonosurgical method for male-to-female transsexuals. Ann Otol Rhinol Laryngol. 2000;109(11):1082–6.

    Article  CAS  PubMed  Google Scholar 

  124. Spiegel JH. Phonosurgery for pitch alteration: feminization and masculinization of the voice. Otolaryngol Clin North Am. 2006;39(1):77–86.

    Article  PubMed  Google Scholar 

  125. Gross M. Pitch-raising surgery in male-to-female transsexuals. J Voice. 1999;13(2):246–50.

    Article  CAS  PubMed  Google Scholar 

  126. Massenburg BB, Morrison SD, Rashidi V, et al. Educational exposure to transgender patient care in otolaryngology training. J Craniofac Surg. 2018;29(5):1252–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Latif Hamdan .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamdan, AL., Sataloff, R.T., Hawkshaw, M.J. (2021). Sex Hormone Disturbances in Athletes: Implications for Voice. In: Voice Disorders in Athletes, Coaches and other Sports Professionals. Springer, Cham. https://doi.org/10.1007/978-3-030-69831-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69831-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69830-0

  • Online ISBN: 978-3-030-69831-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics