Skip to main content

Structure, Organization and Function of Light-Harvesting Complexes Associated with Photosystem II

  • Chapter
  • First Online:
Photosynthesis: Molecular Approaches to Solar Energy Conversion

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 47))

  • 1389 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ago H, Adachi H, Umena Y, Tashiro T, Kawakami K, Kamiya N, Tian L, … Shen JR (2016) Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga. J Biol Chem 291:5676–5687

    Google Scholar 

  • Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797

    Article  CAS  PubMed  Google Scholar 

  • Bai XC, Mcmullan G, Scheres SHW (2014) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40:49–57

    Article  PubMed  CAS  Google Scholar 

  • Ballottari M, Girardon J, Dall'osto L, Bassi R (2012) Evolution and functional properties of photosystem II light harvesting complexes in eukaryotes. Biochim Biophys Acta 1817:143–157

    Article  CAS  PubMed  Google Scholar 

  • Barros T, Kühlbrandt W (2009) Crystallisation, structure andfunction of plant light-harvesting complex II. Biochim Biophys Acta 1787:753–772

    Article  CAS  PubMed  Google Scholar 

  • Beer A, Gundermann K, Beckmann J, Büchel C (2006) Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. Biochemistry 45:13046–13053

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635

    Article  CAS  PubMed  Google Scholar 

  • Büchel C (2020) Light harvesting complexes in chlorophyll c-containing alga. Biochim Biophys Acta 1861:148027

    Google Scholar 

  • Büchel C (2014) Fucoxanthin-chlorophyll-proteins and non-photochemical fluorescence quenching of diatoms. In: Demmig-Adams B, Garab G, Adams W, Govindjee (eds) Non-photochemical Quenching and Energy Dissipation in Plants. Springer, Dordrecht, pp 259–275

    Chapter  Google Scholar 

  • Büchel C (2015) Evolution and function of light harvesting proteins. J Plant Physiol 172:62–75

    Article  PubMed  CAS  Google Scholar 

  • Büchel C (2019) How diatoms harvest light. Science 365:447–448

    Article  PubMed  CAS  Google Scholar 

  • Buck JM, Sherman J, Bártulos CR, Serif M., Halder M, Henkel J, Falciatore A, … Lepetit B (2019) Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum. Nat Commun 10:4167

    Google Scholar 

  • Burnap RL, Troyan T, Sherman LA (1993) The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43') is encoded by the isiA gene. Plant Physiol 103:893–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao P, Su X, Pan X, Liu Z, Chang W, Li M (2018) Structure, assembly and energy transfer of plant photosystem II supercomplex. Biochim Biophys Acta 1859:633–644

    Article  CAS  Google Scholar 

  • Cao P, Cao D, Si L, Su X, Tian L, Chang W, Liu Z, Zhang X, Li M (2020) Structural basis for energy and electron transfer of the photosystem I–IsiA–flavodoxin supercomplex. Nat Plants 6:167–176

    Article  CAS  PubMed  Google Scholar 

  • Croce R, Amerongen HV (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10:492–501

    Article  CAS  PubMed  Google Scholar 

  • Dall'Osto L, Lico C, Alric J, Giuliano G, Havaux M, Bassi R (2006) Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol 6(32)

    Google Scholar 

  • Falkowski PG, Chen YB (2003) Photoacclimation of light harvesting systems in eukayotic algae. In: Green BR, Parson WW (eds) Light-Harvesting Antennas in Photosynthesis. Kluwer Academic Publishers, London, pp 423–447

    Chapter  Google Scholar 

  • Fan M, Li M, Liu Z, Cao P, Pan X, Zhang H, Zhao X, …, Chang W (2015) Crystal structures of the PsbS protein essential for photoprotection in plants, Nat Struct Mol Biol 22:729–735

    Google Scholar 

  • Faruqi A, McMullan G (2011) Electronic detectors for electron microscopy. Q Rev Biophys 44:357–390

    Article  CAS  PubMed  Google Scholar 

  • Flori S, Jouneau PH, Bailleul B, Gallet B, Estrozi LF, Moriscot C, Bastien O, …, Finazzi G (2017) Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nat Commun 8:15885

    Google Scholar 

  • Gelzinis A, Butkus V, Songaila E, Augulis R, Gall A, Büchel C, Robert B, …, Valkunas L (2015) Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex. Biochim Biophys Acta 1847:241–247

    Google Scholar 

  • Giovagnetti V, Ruban AV (2017) Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1858:218–230

    Article  CAS  Google Scholar 

  • Giovagnetti V, Ruban AV (2018) The evolution of the photoprotective antenna proteins in oxygenic photosynthetic eukaryotes. Biochem Soc Trans 46:1263–1277

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172:13–32

    Article  CAS  PubMed  Google Scholar 

  • Green BR (2003) The evolution of light-harvesting antennas. In: Green BR, Parson WW (eds) Light-Harvesting Antennas in Photosynthesis. Kluwer Academic Publishers, London, pp 129–168

    Chapter  Google Scholar 

  • Green BR, Dumford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714

    Article  CAS  PubMed  Google Scholar 

  • Green BR, Kiihlbrandt W (1995) Sequence conservation of light-harvesting and stress-response proteins in relation to the three-dimensional molecular structure of LHCII. Photosynth Res 44:139–148

    Article  CAS  PubMed  Google Scholar 

  • Green BR, Pichersky E (1994) Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting proteins from two-helix and four-helix ancestors. Photosynth Res 39:149–162

    Article  CAS  PubMed  Google Scholar 

  • Hiller RG, Wrench PM, Gooley AP, Shoebridge G, Breton J (1993) The major intrinsic light-harvesting protein of Amphidinium: characterization and relation to other light-harvesting proteins. Photochem Photobiol 57:125–131

    Article  CAS  PubMed  Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light harvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science 272:1788–1791

    Article  CAS  PubMed  Google Scholar 

  • Jansson S, Andersson J, Kim SJ, Jackowski G (2000) An Arabidopsis thaliana protein homologous to cyanobacterial high-light-inducible proteins. Plant Mol Bioi 42:345–351

    Article  CAS  Google Scholar 

  • Kana R, Govindjee (2016, 1849) Role of ions in the regulation of light-harvesting. Front Plant Sci:7

    Google Scholar 

  • Kühlbrandt W, Wang DN (1991) Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature 350:130–134

    Article  PubMed  Google Scholar 

  • Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621

    Article  PubMed  Google Scholar 

  • La Roche J, van der Staay GW, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, …, Green BR (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA 93:15244–15248

    Google Scholar 

  • Laudenbach DE, Straus NA (1988) Characterization of a cyanobacterial iron stress-induced gene similar to psbc. J Bacteriol 170:5018–5026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewin RA (2002) Prochlorophyta – a matter of class distinctions. Photosynth Res 73:59–61

    Google Scholar 

  • Li DH, Wang W, Zhou C, Zhang Y, Wang P, Shen JR, Kuang TY, Zhang JP (2020) Excitation dynamics and relaxation in the major antenna of a marine green alga Bryopsis corticulans. Biochim Biophys Acta 1861:148186

    Google Scholar 

  • Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Su HN, Pu Y, Chen J, Liu LN, Liu Q, Qin S (2019) Phycobiliproteins: molecular structure, production, applications, and prospects. Biotechnol Adv 37:340–353

    Article  CAS  PubMed  Google Scholar 

  • Liguori N, Xu P, van Stokkum IHM, van Oort B, Lu Y, Karcher D, Bock R, Croce R (2017) Different carotenoid conformations have distinct functions in light-harvesting regulation in plants. Nat Commun 8:1994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang TY, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Ã… resolution. Nature 428:287–292

    Article  CAS  PubMed  Google Scholar 

  • Ma J, You X, Sun S, Wang X, Qin S, Sui SF (2020) Structural basis of energy transfer in Porphyridium purpureum phycobilisome. Nature 579:146–151

    Article  CAS  PubMed  Google Scholar 

  • Marx A, Adir N (2013) Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly. Biochim Biophys Acta 1827:311–318

    Article  CAS  PubMed  Google Scholar 

  • Mazor Y, Borovikova A, Caspy I, Nelson N (2017) Structure of the plant photosystem I supercomplex at 2 6 Ã… resolution. Nat Plants 3:17014

    Article  CAS  PubMed  Google Scholar 

  • Minagawa J (2011) State transitions--the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta 1807:897–905

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Yokono M, Teshigahara A, Akimoto S, Tomo T (2014) Light-harvesting ability of the fucoxanthin chlorophyll a/c binding protein associated with photosystem II from the diatom Chaetoceros gracilis as revealed by picosecond time resolved fluorescence spectroscopy. J Phys Chem B 118:5093–5100

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Kato K, Suzuki T, Ifuku K, Uchiyama I, Kashino Y, Dohmae N, …, Akita F (2019) Structural basis for energy harvesting and dissipation in a diatom PSII-FCPII. Nat Plants 5:890–901

    Google Scholar 

  • Nakayama K, Okada M (1990) Purification and characterization of light-harvesting chlorophyll a/b-protein complexes of photosystem-II from the green-alga, Bryopsis maxima. Plant Cell Physiol 31:253–260

    CAS  Google Scholar 

  • Natali A, Croce R (2015) Characterization of the major light-harvesting complexes (LHCBM) of the green alga Chlamydomonas reinhardtii. PLoS One 10:e0119211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neilson JA, Durnford DG (2010a) Structural and functional diversification of the light-harvesting complexes in photosynthetic eukaryotes. Photosynth Res 106:57–71

    Article  CAS  PubMed  Google Scholar 

  • Neilson JA, Durnford DG (2010b) Evolutionary distribution of light-harvesting complex-like proteins in photosynthetic eukaryotes. Genome 53:68–78

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystem I and II. Annu Rev Plant Biol 57:521–565

    Article  CAS  PubMed  Google Scholar 

  • Nicol L, Nawrocki WJ, Croce R (2019) Disentangling the sites of non-photochemical quenching in vascular plants. Nat Plants 5:1177–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novoderezhkin VI, Palacios MA, van Amerongen H, van Grondelle R (2005) Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 angstrom crystal structure. J Phys Chem B 109:10493–10504

    Article  CAS  PubMed  Google Scholar 

  • Nussberger S, Dörr K, Wang DN, Kühlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234:347–356

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Obata F, Shibata K (1966) Two pigment proteins in spinach chloroplasts. Biochim Biophys Acta 112: 223–234

    Google Scholar 

  • Owens TG (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum: II. Distribution of excitation energy between the photosystems. Plant Physiol 80:739–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Cao P, Su X, Liu Z, Li M (2020) Structural analysis and comparison of light-harvesting complexes I and II. Biochim Biophys Acta 1861:148038

    Article  CAS  Google Scholar 

  • Pan X, Li M, Wan T, Wang L, Jia C, Hou Z, Zhao X, Zhang J, Chang W (2011) Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat Struct Mol Biol 18:309–315

    Google Scholar 

  • Pan X, Ma J, Su X, Cao P, Chang W, Liu Z, Zhang X, Li M (2018) Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 360:1109–1113

    Article  CAS  PubMed  Google Scholar 

  • Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521

    Article  CAS  PubMed  Google Scholar 

  • Peng PP, Dong LL, Sun YF, Li ZX, Long DW, Scheer H, Yang X, Zhao KH (2014) The structure of allophycocyanin B from Synechocystis PCC 6803 reveals the structural basis for the extreme redshift of the terminal emitter in phycobilisomes. Acta Crystallogr D Biol Crystallogr 70:2558–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pi X, Tian LR, Dai HE, Qin X, Cheng L, Kuang TY, Sui SF, Shen JR (2018) Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc Natl Acad Sci USA 115:4423–4428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pi X, Zhao S, Wang W, Liu D, Xu C, Han G, Kuang TY, …, Shen JR (2019) The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex. Science 365:eaax0446

    Google Scholar 

  • Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems. Chem Rev 104:2021–2071

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Wang W, Wang K, Xin Y, Kuang TY (2011) Isolation and characteristics of the PSI-LHCI-LHCII supercomplex under high light. Photochem Photobiol 87:143–150

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Suga M, Kuang TY, Shen JR (2015) Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348:989–995

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Pi X, Wang W, Han G, Zhu L, Liu M, Cheng L, …, Sui SF (2019) Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. Nat Plants 5:263–272

    Google Scholar 

  • Ritter S, Hiller RG, Wrench PM, Welte W, Diederichs K (1999) Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-Ã… resolution. J Struct Biol 126:86–97

    Article  CAS  PubMed  Google Scholar 

  • Rochaix JD (2014) Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 65:287–309

    Article  CAS  PubMed  Google Scholar 

  • Roding A, Boekema E, Büchel C (2018) The structure of FCPb, a light-harvesting complex in the diatom Cyclotella meneghiniana. Photosynth Res 135:203–211

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Wentworth M, Yakushevska AE, Andersson J, Lee PJ, Keegstra W, Dekker JP, …, Horton P (2003) Plants lacking the main light-harvesting complex retain photosystem II macro-organization. Nature 421:648–652

    Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, …, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578

    Google Scholar 

  • Ruban AV, Johnson MP, Duffy CD (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    Article  CAS  PubMed  Google Scholar 

  • Saer RG, Blankenship RE (2017) Light harvesting in phototrophic bacteria: structure and function. Biochem J 474:2107–2131

    Article  CAS  PubMed  Google Scholar 

  • Shen JR (2015) Structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu Rev Plant Biol 66:23–48

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Huang Z, Chang S, Wang W, Wang J, Kuang TY, Han G, …, Zhang X (2019) Structure of a C2S2M2N2-type PSII–LHCII supercomplex from the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 116:21246–21255

    Google Scholar 

  • Sheng X, Liu X, Cao P, Li M, Liu Z (2018) Structural roles of lipid molecules in the assembly of plant PSII-LHCII supercomplex. Biophys Rep 4:189–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng X, Watanabe A, Li A, Kim E, Song C, Murata K, Song D, …, Liu Z (2019) Structural insight into light harvesting for photosystem II in green algae. Nat Plants 5:1320–1330

    Google Scholar 

  • Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Ã… resolution. EMBO J 24:919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Ma J, Wei X, Cao P, Zhu D, Chang W, Liu Z, …, Li M (2017) Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. Science 357:815–820

    Google Scholar 

  • Su X, Ma J, Pan X, Zhao X, Chang W, Liu Z, Zhang X, Li M (2019) Antenna arrangement and energy transfer pathways of a green algal photosystem I-LHCI supercompelx. Nat Plants 5:273–281

    Article  CAS  PubMed  Google Scholar 

  • Suga M, Shen JR (2020) Structural variations of photosystem I-antenna supercomplex in response to adaptations to different light environments. Curr Opin Struct Biol 63:10–17

    Article  CAS  PubMed  Google Scholar 

  • Suga M, Ozawa SI, Yoshida-Motomura K, Akita F, Miyazaki N, Takahashi Y (2019) Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. Nat Plants 5:626–636

    Article  PubMed  Google Scholar 

  • Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Okamuro A, Minagawa J, Takahashi Y (2014) Biochemical characterization of photosystem I-associated light-harvesting complexes I and II isolated from state 2 cells of Chlamydomonas reinhardtii. Plant Cell Physiol 55:1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Thornber JP, Stewart JC, Hatton MW, Bailey JL (1967) Studies on the nature of chloroplast lamellae. II. Chemical composition and further physical properties of two chlorophyll-protein complexes. Biochemistry 6:2006–2014

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Xu P, Chukhutsina VU, Holzwarth AR, Croce R (2017) Zeaxanthin-dependent nonphotochemical quenching does not occur in photosystem I in the higher plant Arabidopsis thaliana. Proc Natl Acad Sci USA 114:4828–4832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 19 Ã…. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • van der Weij-de Wit CD, Ihalainen JA, van Grondelle R, Dekker JP (2007) Excitation energy transfer in native and unstacked thylakoid membranes studied by low temperature and ultrafast fluorescence spectroscopy. Photosynth Res 93:173–182

    Article  PubMed  CAS  Google Scholar 

  • Wada H, Murata N (eds) (2009) Lipids in Photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Walters RG, Ruban AV, Horton P (1996) Identification of proton-active residues in a higher plant light-harvesting complex. Proc Natl Acad Sci USA 93:14204–14209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan T, Li M, Zhao X, Zhang J, Liu Z, Chang W (2014) Crystal structure of a multilayer packed major light-harvesting complex: implications for grana stacking in higher plants. Mol Plant 7:916–919

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Qin X, Sang M, Chen D, Wang K, Lin R, Lu C, …, Kuang TY (2013) Spectral and functional studies on siphonaxanthin-type light-harvesting complex of photosystem II from Bryopsis corticulans. Photosynth Res 117:267–279

    Google Scholar 

  • Wang W, Yu LJ, Xu C, Tomizaki T, Zhao S, Umena Y, Chen X, …, Shen JR (2019) Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science 363:eaav0365

    Google Scholar 

  • Wang W, Zhao S, Pi X, Kuang TY, Sui SF, Shen JR (2020) Structural features of the diatom photosystem II-light-harvesting antenna complex. FEBS J. https://doi.org/10.1111/febs.15183

  • Wei X, Guo J, Li M, Liu Z (2015) Structural mechanism underlying the specific recognition between the Arabidopsis state-transition phosphatase TAP38/PPH1 and phosphorylated light-harvesting complex protein Lhcb1. Plant Cell 27:1113–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z (2016) Structure of spinach photosystem II-LHCII supercomplex at 3.2 Ã… resolution. Nature 534:69–74

    Article  CAS  PubMed  Google Scholar 

  • Williams WP (2004) The physical properties of thylakoid membrane lipids and their relation to photosynthesis. In: Siegenthaler P, Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer Academic Publishers, Dordrecht, pp 103–118

    Chapter  Google Scholar 

  • Wolfe GR, Cunningham FX, Durnfordt D, Green BR, Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367:566–568

    Article  CAS  Google Scholar 

  • Xu DQ, Chen Y, Chen GY (2015) Light-harvesting regulation from leaf to molecule with the emphasis on rapid changes in antenna size. Photosynth Res 124:137–158

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Nakayama TO, Chichester CO (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biochem Biophys 97:168–173

    Article  CAS  PubMed  Google Scholar 

  • Yoshii Y (2006) Diversity and evolution of photosynthetic antenna systems in green plants. Phycol Res 54:220–229

    Article  CAS  Google Scholar 

  • Yu LJ, Suga M, Wang-Otomo ZY, Shen JR (2018) Structure of photosynthetic LH1–RC supercomplex at 1.9 Ã… resolution. Nature 556:209–213

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ma J, Liu D, Qin S, Sun S, Zhao J, Sui SF (2017) Structure of phycobilisome from the red alga Griffithsia pacifica. Nature 551:57–63

    Article  PubMed  CAS  Google Scholar 

  • Zigmantas D, Hiller R, Sharples F, Frank HA, Sundström V, Polívka T (2004) Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys Chem Chem Phys 6:3009–3016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenda Wang or Jian-Ren Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, W., Shen, JR. (2021). Structure, Organization and Function of Light-Harvesting Complexes Associated with Photosystem II. In: Shen, JR., Satoh, K., Allakhverdiev, S.I. (eds) Photosynthesis: Molecular Approaches to Solar Energy Conversion. Advances in Photosynthesis and Respiration, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-030-67407-6_6

Download citation

Publish with us

Policies and ethics