Skip to main content

Chlorophyll Species and Their Functions in the Photosynthetic Energy Conversion

  • Chapter
  • First Online:
Photosynthesis: Molecular Approaches to Solar Energy Conversion

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 47))

  • 1425 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ago H, Adachi H, Umena Y, Tashiro T, Kawakami K, Kamiya N, Tian L, …, Shen JR (2016) Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga. J Biol Chem 291:5676–5687

    Google Scholar 

  • Allakhverdiev SI, Tomo T, Shimada Y, Kindo H, Nagao R, Klimov VV, Mimuro M (2010) Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proc Natl Acad Sci USA 107:3924–3929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allakhverdiev SI, Tsuchiya T, Watabe K, Kojima A, Los DA, Tomo T, Klimov VV, Mimuro M (2011) Redox potentials of primary electron acceptor quinone molecule (QA)- and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proc Natl Acad Sci USA 108:8054–8058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen M (1966) Distribution of the chlorophylls. In: Vernon LP, Gilbert RS (eds) The Chlorophylls. Academic Press, New York/London, pp 511–519

    Chapter  Google Scholar 

  • Antoshvili M, Caspy I, Hippler M, Nelson N (2019) Structure and function of photosystem I in Cyanidioschyzon merolae. Photosynth Res 139:499–508

    Article  CAS  PubMed  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Google Scholar 

  • Battistuzzi G, Borsari M, Loschi L, Righi F, Sola M (1999) Redox thermodynamics of blue copper proteins. J Am Chem Soc 121:501–506

    Article  CAS  Google Scholar 

  • Berthold D, Babcock G, Yocum C (1981) A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett 134:231–234

    Article  CAS  Google Scholar 

  • Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, …, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Google Scholar 

  • Bricker TM, Morvant J, Masri N, Sutton HM, Frankel LK (1998) Isolation of a highly active Photosystem II preparation from Synechocystis 6803 using a histidine-tagged mutant of CP 47. Biochim Biophys Acta 1409:50–57

    Article  CAS  PubMed  Google Scholar 

  • Brockmann H (1978) Stereochemistry and absolute configuration of chlorophylls and linear tetrapyrroles. In: David D (ed) The Porphyrins, vol 2. Academic Press, New York, pp 288–321

    Google Scholar 

  • Campbell L, Nolla H, Vaulot D (1994) The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnol Oceanogr 39:954–961

    Article  CAS  Google Scholar 

  • Chen M (2014) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annu Rev Biochem 83:317–340

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Telfer A, Lin S, Pascal A, Larkum AWD, Barber J, Blankenship RE (2005) The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina. Photochem Photobiol Sci 4:1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai ZL, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329:1318–1319

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Li YQ, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f – a red-absorbing photopigment. FEBS Lett 586:3249–3254

    Article  CAS  PubMed  Google Scholar 

  • Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850

    Article  CAS  Google Scholar 

  • Díaz-Quintana A, Navarro JA, Hervás M, Molina-Heredia FP, De la Cerda B, De la Rosa MA (2003) A comparative structural and functional analysis of cyanobacterial plastocyanin and cytochrome c6 as alternative electron donors to photosystem I. Photosynth Res 75:97–110

    Article  PubMed  Google Scholar 

  • Förster T (1948) Intermolecular energy transfer and fluorescence. Ann Phys (Leipzig) 2:55–75

    Article  Google Scholar 

  • French C (1960) Chlorophylls in vivo and in vitro. In: Ruhland W (ed) Encyclopedia of Plant Physiology, Part 1, vol V. Springer, Heiderberg, pp 252–257

    Google Scholar 

  • Frese RN, Germano M, de Weerd FL, van Stokkum IHM, Shkuropatov AY, Shuvalov VA, van Gorkom HJ, …, Jan Dekker P (2003) Electric field effects on the chlorophylls, pheophytins, and β-carotenes in the reaction center of photosystem II. Biochemistry 42:9205–9213

    Google Scholar 

  • Fromme P, Jordan P, Krauß N (2001) Structure of photosystem I. Biochim Biophys Acta 1507:5–31

    Article  CAS  PubMed  Google Scholar 

  • Gan F, Shen G, Bryant DA (2014a) Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria. Life 5:4–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA (2014b) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1312–1317

    Article  CAS  PubMed  Google Scholar 

  • Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, pp 319–360

    Google Scholar 

  • Ho MY, Bryant DA (2019) Global transcriptional profiling of the cyanobacterium Chlorogloeopsis fritschii PCC 9212 in far-red light: insights into the regulation of chlorophyll d synthesis. Front Microbiol 10:465

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho MY, Shen G, Canniffe DP, Zhao C, Bryant DA (2016) Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science 353:aaf9178

    Article  PubMed  CAS  Google Scholar 

  • Holt A (1966) Recently characterized chlorophylls. In: Vernon LP, Gilbert RS (eds) The Chlorophylls. Academic Press, New York/London, pp 111–118

    Chapter  Google Scholar 

  • Holt A, Morley H (1959) A proposed structure for chlorophyll d. Can J Chem 37:507–514

    Article  CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito H, Tanaka A (2011) Evolution of a divinyl chlorophyll-based photosystem in Prochlorococcus. Proc Natl Acad Sci USA 108:18014–18019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito H, Yokono M, Tanaka R, Tanaka A (2008) Identification of a novel vinyl reductase gene essential for the biosynthesis of monovinyl chlorophyll in Synechocystis sp. PCC6803. J Biol Chem 283:9002–9011

    Article  CAS  PubMed  Google Scholar 

  • Itoh S, Mino H, Itoh K, Shigenaga T, Uzumaki T, Iwaki M (2007) Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina. Biochemistry 46:12473–12481

    Article  CAS  PubMed  Google Scholar 

  • Iwai M, Katoh H, Katayama M, Ikeuchi M (2004) Improved genetic transformation of the thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1. Plant Cell Physiol 45:171–175

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey ST, Humphrey G (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  CAS  Google Scholar 

  • Jensen PE, Gibson LC, Henningsen KW, Hunter CN (1996) Expression of the chlI, chlD, and chlH genes from the Cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 271:16662–16667

    Article  CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Ã… resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kashiyama Y, Miyashita H, Ohkubo S, Ogawa N, Chikaraishi Y, Takano Y, Suga H, …, Ohkouchi N (2008) Evidence of global chlorophyll d. Science 321:658

    Google Scholar 

  • Kato Y, Sugiura M, Oda A, Watanabe T (2009) Spectroelectrochemical determination of the redox potential of pheophytin a, the primary electron acceptor in photosystem II. Proc Natl Acad Sci USA 106:17365–17370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato K, Nagao R, Jiang TY, Ueno Y, Yokono M, Chan SK, Watanabe M, …, Akita F (2019) Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy. Nat Commun 10:4929

    Google Scholar 

  • Kato K, Shinoda T, Nagao R, Akimoto S, Suzuki T Dohmae N, Chen M, …, Tomo T (2020) Structural basis for the adaptation and function of chlorophyll f in photosystem I. Nat Commun 11:238

    Google Scholar 

  • Klimov VV (2003) Discovery of pheophytin function in the photosynthetic energy conversion as the primary electron acceptor of Photosystem II. Photosynth Res 76:247–253

    Article  CAS  PubMed  Google Scholar 

  • Klimov V, Klevanik A, Shuvalov V (1977) Reduction of pheophytin in the primary light reaction of photosystem II. FEBS Lett 82:183–186

    Article  CAS  PubMed  Google Scholar 

  • Klimov V, Allakhverdiev SI, Krasnovskii A (1979a) EPR signal at photoreduction of pheophytin in Photosystem 2 reaction centres of chloroplasts. Dokl Akad Nauk SSSR 249:485–488

    CAS  Google Scholar 

  • Klimov VV, Allakhverdiev SI, Demeter S, Krasnovsky AA (1979b) Photoreduction of pehophytin in the photosystem II of chloroplasts depending on the oxidation-reduction potential of the medium. Dokl Akad Nauk SSSR 249:227–230

    CAS  Google Scholar 

  • Knaff DB (1977) The primary reaction of plant Photosystem II. Photochem Photobiol 26:327–340

    Article  CAS  Google Scholar 

  • Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T (2007) Redox potential of chlorophyll d in vitro. Biochim Biophys Acta 1767:596–602

    Article  CAS  PubMed  Google Scholar 

  • Kühl M, Chen M, Ralph PJ, Schreiber U, Larkum AW (2005) Ecology: a niche for cyanobacteria containing chlorophyll d. Nature 433:820–820

    Article  PubMed  CAS  Google Scholar 

  • Kumazaki S, Abiko K, Ikegami I, Iwaki M, Itoh S (2002) Energy equilibration and primary charge separation in chlorophyll d-based photosystem I reaction center isolated from Acaryochloris marina. FEBS Lett 530:153–157

    Article  CAS  PubMed  Google Scholar 

  • Li YQ, Scales N, Blankenship RE, Willows RD, Chen M (2012) Extinction coefficient for red-shifted chlorophylls: Chlorophyll d and chlorophyll f. Biochim Biophys Acta 1817:1292–1298

    Article  CAS  PubMed  Google Scholar 

  • Li M, Semchonok DA, Boekema EJ, Bruce BD (2014) Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821. Plant Cell 26:1230–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature 428:287–292

    Article  CAS  PubMed  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Ã… resolution structure of photosystem II. Nature 438:1040–1044

    Article  CAS  PubMed  Google Scholar 

  • Lötjönen S, Hynninen PH (2005) Carbon-13 NMR spectra of chlorophyll a, chlorophyll a′, pyrochlorophyll a and the corresponding pheophytins. Org Magn Reson 21:757–765

    Article  Google Scholar 

  • Malavath T, Caspy I, Netzer-El SY, Klaiman D, Nelson N (2018) Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Biochim Biophys Acta 1859:645–654

    Article  CAS  Google Scholar 

  • Manning WM, Strain HH (1943) Chlorophyll d, a green pigment of red algae. J Biol Chem 151:1–19

    Article  CAS  Google Scholar 

  • Miller SR, Wood AM, Blankenship RE, Kim M, Ferriera S (2011) Dynamics of gene duplication in the genomes of chlorophyll d-producing cyanobacteria: implications for the ecological niche. Gennome Bio Evol 3:601–613

    Article  CAS  Google Scholar 

  • Mimuro M, Akimoto S, Yamazaki I, Miyashita H, Miyachi S (1999) Fluorescence properties of chlorophyll d-dominating prokaryotic alga, Acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1412:37–46

    Article  CAS  PubMed  Google Scholar 

  • Mimuro M, Akimoto S, Gotoh T, Yokono M, Akiyama M, Tsuchiya T, Miyashita H, …, Yamazaki I (2004) Identification of the primary electron donor in PS II of the Chl d-dominated cyanobacterium Acaryochloris marina. FEBS Lett 556:95–98

    Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402

    Article  CAS  Google Scholar 

  • Miyashita H, Adachi K, Kurano N, Ikemot H, Chihara M, Miyach S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38:274–281

    Article  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M (2003) Acaryochloris marina gen. et sp. nov. (cyanobacteria), An oxygenic photosynthetic prokaryote containing Chl d as a major pigment. J Phycol 39:1247–1253

    Article  CAS  Google Scholar 

  • Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303:1633

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Kato K, Suzuki T, Ifuku K, Uchiyama I, Kashino Y, Dohmae N, …, Akita F (2019) Structural basis for energy harvesting and dissipation in a diatom PSII-FCPII. Nat Plants 5:890-901

    Google Scholar 

  • Nagata N, Tanaka R, Satoh S, Tanaka A (2005) Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura A, Suzawa T, Kato Y, Watanabe T (2005) Significant species-dependence of P700 redox potential as verified by spectroelectrochemistry: Comparison of spinach and Theromosynechococcus elongatus. FEBS Lett 579:2273–2276

    Article  CAS  PubMed  Google Scholar 

  • Nanba O, Satoh K (1987) Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84:109–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi T, Tomo T, Kato C (2001) Triplet formation on a monomeric chlorophyll in the photosystem II reaction center as studied by time-resolved infrared spectroscopy. Biochemistry 40:2176–2185

    Article  CAS  PubMed  Google Scholar 

  • Nowaczyk MM, Hebeler R, Schlodder E, Meyer HE, Warscheid B, Rögner M (2006) Psb27, a cyanobacterial lipoprotein, is involved in the repair cycle of photosystem II. Plant Cell 18:3121–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nürnberg DJ, Morton J, Santabarbara S, Telfer A, Joliot P, Antonaru LA, Ruban AV, …, Rutherford AW (2018) Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science 360:1210–1213

    Google Scholar 

  • Ohkubo S, Miyashita H (2017) A niche for cyanobacteria producing chlorophyll f within a microbial mat. ISME J 11:2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki S, Tomo T, Mimuro M (2010) Direct measurement of singlet oxygen produced by four chlorin-ringed chlorophyll species in acetone solution. Chem Phys Lett 485:202–206

    Article  CAS  Google Scholar 

  • Okubo T, Tomo T, Sugiura M, Noguchi T (2007) Perturbation of the structure of P680 and the charge distribution on its radical cation in isolated reaction center complexes of photosystem II as revealed by Fourier transform infrared spectroscopy. Biochemistry 46:4390–4397

    Article  CAS  PubMed  Google Scholar 

  • Oster U, Tanaka R, Tanaka A, Rüdiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21:305–310

    Article  CAS  PubMed  Google Scholar 

  • Partensky F, Hess W, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partensky F, Six C, Ratin M, Garczarek L, Vaulot D, Probert I, Calteau A, …, Garrido JL (2018) A novel species of the marine cyanobacterium Acaryochloris with a unique pigment content and lifestyle. Sci Rep 8:9142

    Google Scholar 

  • Pi X Zhao S, Wang W, Liu D, Xu C, Han G, Kuang T, …, Shen JR (2019) The pigment-protein network of a diatom photosystem II-light-harvesting antenna supercomplex, Science 365:eaax0446

    Google Scholar 

  • Porra R, Thompson W, Kriedemann P (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Prokhorenko VI, Holzwarth AR (2000) Primary processes and structure of the photosystem II reaction center: a photon echo study. J Phys Chem B 104:11563–11578

    Article  CAS  Google Scholar 

  • Razeghifard MR, Chen M, Hughes JL, Freeman J, Krausz E, Wydrzynski T (2005) Spectroscopic studies of photosystem II in chlorophyll d-containing Acaryochloris marina. Biochemistry 44:11178–11187

    Article  CAS  PubMed  Google Scholar 

  • Renger T, Schlodder E (2008) The primary electron donor of photosystem II of the cyanobacterium Acaryochloris marina is a chlorophyll d and the water oxidation is driven by a chlorophyll a/chlorophyll d heterodimer. J Phys Chem B 112:7351–7354

    Article  CAS  PubMed  Google Scholar 

  • Rutherford A, Mullet J, Crofts A (1981) Measurement of the midpoint potential of the pheophytin acceptor of photosystem II. FEBS Lett 123:235–237

    Article  CAS  Google Scholar 

  • Sawicki A, Willows RD, Chen M (2019) Spectral signatures of five hydroxymethyl chlorophyll a derivatives chemically derived from chlorophyll b or chlorophyll f. Photosynth Res 140:115–127

    Article  CAS  PubMed  Google Scholar 

  • Schenderlein M, Çetin M, Barber J, Telfer A, Schlodder E (2008) Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium, Acaryochloris marina. Biochim Biophys Acta 1777:1400–1408

    Article  CAS  PubMed  Google Scholar 

  • Schlodder E, Çetin M, Eckert HJ, Schmitt FJ, Barber J, Telfer A (2007) Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina. Biochim Biophys Acta 1767:589–595

    Article  CAS  PubMed  Google Scholar 

  • Schmitt F-J, Campbell ZY, Bui MV, Hüls A, Tomo T, Chen M, Maksimov EG, …, Friedrich T (2019) Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light. Photosynth Res 139:185–201

    Google Scholar 

  • Semchonok DA, Li M, Bruce BD, Oostergetel GT, Boekema EJ (2016) Cryo-EM structure of a tetrameric cyanobacterial photosystem I complex reveals novel subunit interactions. Biochim Biophys Acta 1857:1619–1626

    Article  CAS  PubMed  Google Scholar 

  • Shevela D, Nöring B, Eckert HJ, Messinger J, Renger G (2006) Characterization of the water oxidizing complex of photosystem II of the Chl d-containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors. Phys Chem Chem Phys 8:3460–3466

    Article  CAS  PubMed  Google Scholar 

  • Shimada Y, Suzuki H, Tsuchiya T, Tomo T, Noguchi T, Mimuro M (2009) Effect of a single-amino acid substitution of the 43 kDa chlorophyll protein on the oxygen-evolving reaction of the cyanobacterium Synechocystis sp. PCC 6803: analysis of the Glu354Gln mutation. Biochemistry 48:6095–6103

    Article  CAS  PubMed  Google Scholar 

  • Sigfridsson K, Hansson Ö, Karlsson BG, Baltzer L, Nordling M, Lundberg LG (1995) Spectroscopic and kinetic characterization of the spinach plastocyanin mutant Tyr83-His: a histidine residue with a high pK value. Biochim Biophys Acta 1228:28–36

    Article  Google Scholar 

  • Sivakumar V, Wang R, Hastings G (2003) Photo-Oxidation of P740, the Primary Electron Donor in Photosystem I from Acaryochloris marina. Biophys J 85:3162–3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Socrates G (2001) Infrared and Raman Characteristic Group Frequencies: Tables and Charts. Wiley, Chichester

    Google Scholar 

  • Soret JL (1883) Analyse spectrale: Sur le spectre d’absorption du song dans la partie violette et ultra-violette. Compt Rend 97:1269–1273

    Google Scholar 

  • Standfuss J, van Scheltinga ACT, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Ã… resolution. EMBO J 24:919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, …, Shen JR (2015) Native structure of photosystem II at 1.95 Ã… resolution viewed by femtosecond X-ray pulses. Nature 517:99–103

    Google Scholar 

  • Sugiura M, Inoue Y (1999) Highly purified thermo-stable oxygen-evolving photosystem II core complex from the thermophilic cyanobacterium Synechococcus elongatus having His-tagged CP43. Plant Cell Physiol 40:1219–1231

    Article  CAS  PubMed  Google Scholar 

  • Swingley WD, Chen M, Cheung PC, Conrad AL, Dejesa LC, Hao J, Honchak BM, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD (2008) Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci USA 105:2005–2010

    Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684–697

    Article  CAS  PubMed  Google Scholar 

  • Tomo T, Suzuki T, Hirano E, Tsuchiya T, Miyashita H, Dohmae N, Mimuro M (2006) Reversible absorption change of chlorophyll d in solutions. Chem Phys Lett 423:282–287

    Article  CAS  Google Scholar 

  • Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, Tsuchiya T, Noguchi T, Mimuro M (2007) Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium. Proc Natl Acad Sci USA 104:7283–7288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomo T, Kato Y, Suzuki T, Akimoto S, Okubo T, Noguchi T, Hasegawa K, …, Mimuro M (2008) Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017. J Biol Chem 283:18198–18209

    Google Scholar 

  • Tomo T, Akimoto S, Ito H, Tsuchiya T, Fukuya M, Tanaka A, Mimuro M (2009) Replacement of chlorophyll with di-vinyl chlorophyll in the antenna and reaction center complexes of the cyanobacterium Synechocystis sp. PCC 6803: characterization of spectral and photochemical properties. Biochim Biophys Acta 1787:191–200

    Article  CAS  PubMed  Google Scholar 

  • Tomo T, Kusakabe H, Nagao R, Ito H, Tanaka A, Akimoto S, Mimuro M, Okazaki S (2012) Luminescence of singlet oxygen in photosystem II complexes isolated from cyanobacterium Synechocystis sp. PCC6803 containing monovinyl or divinyl chlorophyll a. Biochim Biophys Acta 1817:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya T, Akimoto S, Mizoguchi T, Watabe K, Kindo H, Tomo T, Tamiaki H, Mimuro M (2012a) Artificially produced 7-formyl -chlorophyll d functions as an antenna pigment in the photosystem II isolated from the chlorophyllide a oxygenase-expressing Acaryochloris marina. Biochim Biophys Acta 1817:1285–1291

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya T, Mizoguchi T, Akimoto S, Tomo T, Tamiaki H, Mimuro M (2012b) Metabolic engineering of the Chl d-dominated cyanobacterium Acaryochloris marina: production of a novel Chl species by the introduction of the chlorophyllide a oxygenase gene. Plant Cell Physiol 53:518–527

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Ã…. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Yu L-J, Xu C, Tomizaki T, Zhao S, Umena Y, Chen X, …, Shen JR (2019) Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science 363:eaav0365

    Google Scholar 

  • Watanabe T, Hongu A, Honda K, Nakazato M, Konno M, Saitoh S (1984) Preparation of chlorophylls and pheophytins by isocratic liquid chromatography. Analytical Chem 56:251–256

    Article  CAS  Google Scholar 

  • Watanabe M, Kubota H, Wada H, Narikawa R, Ikeuchi M (2011) Novel supercomplex organization of photosystem I in Anabaena and Cyanophora paradoxa. Plant Cell Physiol 52:162–168

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Semchonok DA, Webber-Birungi MT, Ehira S, Kondo K, Narikawa R, Ohmori M, …, Ikeuchi M (2014) Attachment of phycobilisomes in an antenna–photosystem I supercomplex of cyanobacteria. Proc Natl Acad Sci USA 111: 2512–2517

    Google Scholar 

  • Zapata M, Garrido JL, Jeffrey SW (2006) Chlorophyll c pigments: current status. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and Bacteriochlorophylls. Springer, pp 39–53

    Google Scholar 

  • Zheng L, Li Y, Li X, Zhong Q, Li N, Zhang K, Zhang Y, …, Gao N (2019) Structural and functional insights into the tetrameric photosystem I from heterocyst-forming cyanobacteria. Nat Plants 10:1087-1097

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Tomo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomo, T., Allakhverdiev, S.I. (2021). Chlorophyll Species and Their Functions in the Photosynthetic Energy Conversion. In: Shen, JR., Satoh, K., Allakhverdiev, S.I. (eds) Photosynthesis: Molecular Approaches to Solar Energy Conversion. Advances in Photosynthesis and Respiration, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-030-67407-6_5

Download citation

Publish with us

Policies and ethics