Skip to main content

The Decision to Initiate Dialysis in Children and Adolescents

  • Chapter
  • First Online:
Pediatric Dialysis

Abstract

There is limited evidence on the optimal timing of dialysis initiation in children. An estimate of the glomerular filtration rate (GFR) provides useful information in guiding this decision, but should not be utilized in isolation, especially since estimates of GFR are less precise at low levels of GFR. Available evidence suggests that the decision to initiate dialysis should be largely based on the presence of specific indications, including uremic symptoms, malnutrition and refractory laboratory abnormalities, and psychosocial considerations. Appropriate preparation of the patient and family for dialysis is critical to optimize patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pottel H. Measuring and estimating glomerular filtration rate in children. Pediatr Nephrol. 2017;32(2):249–63.

    Article  PubMed  Google Scholar 

  2. Schwartz GJ, Furth S, Cole SR, Warady B, Munoz A. Glomerular filtration rate via plasma iohexol disappearance: pilot study for chronic kidney disease in children. Kidney Int. 2006;69(11):2070–7.

    Article  CAS  PubMed  Google Scholar 

  3. Soveri I, Berg UB, Björk J, Elinder C-G, Grubb A, Mejare I, et al. Measuring GFR: a systematic review. Am J Kidney Dis. 2014;64(3):411–24.

    Article  PubMed  Google Scholar 

  4. Perrone RD, Steinman TI, Beck GJ, Skibinski CI, Royal HD, Lawlor M, et al. Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. The Modification of Diet in Renal Disease Study. Am J Kidney Dis. 1990;16(3):224–35.

    Article  CAS  PubMed  Google Scholar 

  5. Morton KA, Pisani DE, Whiting JH Jr, Cheung AK, Arias JM, Valdivia S. Determination of glomerular filtration rate using technetium-99m-DTPA with differing degrees of renal function. J Nucl Med Technol. 1997;25(2):110–4.

    CAS  PubMed  Google Scholar 

  6. Delanaye P, Ebert N, Melsom T, Gaspari F, Mariat C, Cavalier E, et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 1: how to measure glomerular filtration rate with iohexol? Clin Kidney J. 2016;9(5):682–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li Y, Lee HB, Blaufox MD. Single-sample methods to measure GFR with technetium-99m-DTPA. J Nucl Med. 1997;38(8):1290–5.

    CAS  PubMed  Google Scholar 

  8. Shemesh O, Golbetz H, Kriss JP, Myers BD. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985;28(5):830–8.

    Article  CAS  PubMed  Google Scholar 

  9. Modification of Diet in Renal Disease Study Group. Effects of diet and antihypertensive therapy on creatinine clearance and serum creatinine concentration in the Modification of Diet in Renal Disease Study. J Am Soc Nephrol. 1996;7(4):556–66.

    Article  Google Scholar 

  10. Lubowitz H, Slatopolsky E, Shankel S, Rieselbach RE, Bricker NS. Glomerular filtration rate. Determination in patients with chronic renal disease. JAMA. 1967;199(4):252–6.

    Article  CAS  PubMed  Google Scholar 

  11. van Olden RW, Krediet RT, Struijk DG, Arisz L. Measurement of residual renal function in patients treated with continuous ambulatory peritoneal dialysis. J Am Soc Nephrol. 1996;7(5):745–50.

    Article  PubMed  Google Scholar 

  12. Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4(11):1832–43.

    Article  PubMed  Google Scholar 

  13. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976;58(2):259–63.

    Article  CAS  PubMed  Google Scholar 

  14. De Souza VC, Rabilloud M, Cochat P, Selistre L, Hadj-Aissa A, Kassai B, et al. Schwartz formula: is one k-coefficient adequate for all children? PLoS One. 2012;7(12):e53439–e.

    Article  CAS  Google Scholar 

  15. Björk J, Nyman U, Berg U, Delanaye P, Dubourg L, Goffin K, et al. Validation of standardized creatinine and cystatin C GFR estimating equations in a large multicentre European cohort of children. Pediatr Nephrol. 2019;34(6):1087–98.

    Article  PubMed  Google Scholar 

  16. Lewis J, Agodoa L, Cheek D, Greene T, Middleton J, O'Connor D, et al. Comparison of cross-sectional renal function measurements in African Americans with hypertensive nephrosclerosis and of primary formulas to estimate glomerular filtration rate. Am J Kidney Dis. 2001;38(4):744–53.

    Article  CAS  PubMed  Google Scholar 

  17. Mitch WE, Collier VU, Walser M. Creatinine metabolism in chronic renal failure. Clin Sci. 1980;58(4):327–35.

    Article  CAS  Google Scholar 

  18. Andersen TB, Eskild-Jensen A, Frokiaer J, Brochner-Mortensen J. Measuring glomerular filtration rate in children; can cystatin C replace established methods? A review. Pediatr Nephrol. 2009;24(5):929–41.

    Article  PubMed  Google Scholar 

  19. Salvador CL, Tøndel C, Rowe AD, Bjerre A, Brun A, Brackman D, et al. Estimating glomerular filtration rate in children: evaluation of creatinine- and cystatin C-based equations. Pediatr Nephrol. 2019;34(2):301–11.

    Article  PubMed  Google Scholar 

  20. Correia-Costa L, Schaefer F, Afonso AC, Bustorff M, Guimaraes JT, Guerra A, et al. Normalization of glomerular filtration rate in obese children. Pediatr Nephrol. 2016;31(8):1321–8.

    Article  PubMed  Google Scholar 

  21. Zappitelli M, Parvex P, Joseph L, Paradis G, Grey V, Lau S, et al. Derivation and validation of cystatin C-based prediction equations for GFR in children. Am J Kidney Dis. 2006;48(2):221–30.

    Article  CAS  PubMed  Google Scholar 

  22. Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82(4):445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  25. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461–70.

    Article  CAS  PubMed  Google Scholar 

  26. Inker LA, Shaffi K, Levey AS. Estimating glomerular filtration rate using the chronic kidney disease-epidemiology collaboration creatinine equation: better risk predictions. Circ Heart Fail. 2012;5(3):303–6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Selistre L, De Souza V, Cochat P, Antonello ICF, Hadj-Aissa A, Ranchin B, et al. GFR estimation in adolescents and young adults. J Am Soc Nephrol. 2012;23(6):989–96.

    Article  CAS  PubMed  Google Scholar 

  28. Ng DK, Schwartz GJ, Schneider MF, Furth SL, Warady BA. Combination of pediatric and adult formulas yield valid glomerular filtration rate estimates in young adults with a history of pediatric chronic kidney disease. Kidney Int. 2018;94(1):170–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cowan ACJ, Gharib EG, Weir MA. Advances in the management of hyperkalemia in chronic kidney disease. Curr Opin Nephrol Hypertens. 2017;26(3):235–9.

    Article  CAS  PubMed  Google Scholar 

  30. Rodan AR. Potassium: friend or foe? Pediatr Nephrol. 2017;32(7):1109–21.

    Article  PubMed  Google Scholar 

  31. Palmer BF, Clegg DJ. Hyperkalemia across the continuum of kidney function. Clin J Am Soc Nephrol. 2018;13(1):155–7.

    Article  PubMed  Google Scholar 

  32. Keung LG. Renastart use in an infant on peritoneal dialysis. Adv Perit Dial. 2017;33:79–83.

    CAS  PubMed  Google Scholar 

  33. Palmer BF. Renal complications associated with use of nonsteroidal anti-inflammatory agents. J Investig Med. 1995;43(6):516–33.

    CAS  PubMed  Google Scholar 

  34. Bakris GL, Siomos M, Richardson D, Janssen I, Bolton WK, Hebert L, et al. ACE inhibition or angiotensin receptor blockade: impact on potassium in renal failure. VAL-K Study Group. Kidney Int. 2000;58(5):2084–92.

    Article  CAS  PubMed  Google Scholar 

  35. Hayes CP Jr, McLeod ME, Robinson RR. An extravenal mechanism for the maintenance of potassium balance in severe chronic renal failure. Trans Assoc Am Phys. 1967;80:207–16.

    PubMed  Google Scholar 

  36. Allon M. Treatment and prevention of hyperkalemia in end-stage renal disease. Kidney Int. 1993;43(6):1197–209.

    Article  CAS  PubMed  Google Scholar 

  37. Shahar-Nissan K, Peled O, Krause I. The ice cream challenge: a favourable extemporaneous Kayexalate formulation improves compliance in paediatric patients. Br J Clin Pharmacol. 2019;85(10):2450–2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Thompson K, Flynn J, Okamura D, Zhou L. Pretreatment of formula or expressed breast milk with sodium polystyrene sulfonate (Kayexalate(®)) as a treatment for hyperkalemia in infants with acute or chronic renal insufficiency. J Ren Nutr. 2013;23(5):333–9.

    Article  CAS  PubMed  Google Scholar 

  39. Le Palma K, Pavlick ER, Copelovitch L. Pretreatment of enteral nutrition with sodium polystyrene sulfonate: effective, but beware the high prevalence of electrolyte derangements in clinical practice. Clin Kidney J. 2018;11(2):166–71.

    Article  CAS  PubMed  Google Scholar 

  40. Bakris GL, Pitt B, Weir MR, Freeman MW, Mayo MR, Garza D, et al. Effect of Patiromer on serum potassium level in patients with hyperkalemia and diabetic kidney disease: the AMETHYST-DN randomized clinical trial. JAMA. 2015;314(2):151–61.

    Article  CAS  PubMed  Google Scholar 

  41. Kosiborod M, Peacock WF, Packham DK. Sodium zirconium cyclosilicate for urgent therapy of severe hyperkalemia. N Engl J Med. 2015;372(16):1577–8.

    Article  PubMed  Google Scholar 

  42. Packham DK, Kosiborod M. Pharmacodynamics and pharmacokinetics of sodium zirconium cyclosilicate [ZS-9] in the treatment of hyperkalemia. Expert Opin Drug Metab Toxicol. 2016;12(5):567–73.

    Article  CAS  PubMed  Google Scholar 

  43. Paloian NJ, Bowman B, Bartosh SM. Treatment of infant formula with patiromer dose dependently decreases potassium concentration. Pediatr Nephrol. 2019;34(8):1395–401.

    Article  PubMed  Google Scholar 

  44. Portale AA, Booth BE, Halloran BP, Morris RC Jr. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest. 1984;73(6):1580–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007;71(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  46. Portale AA, Wolf M, Jüppner H, Messinger S, Kumar J, Wesseling-Perry K, et al. Disordered FGF23 and mineral metabolism in children with CKD. Clin J Am Soc Nephrol. 2014;9(2):344–53.

    Article  CAS  PubMed  Google Scholar 

  47. Wesseling-Perry K, Salusky IB. Chronic kidney disease: mineral and bone disorder in children. Semin Nephrol. 2013;33(2):169–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Adeney KL, Siscovick DS, Ix JH, Seliger SL, Shlipak MG, Jenny NS, et al. Association of serum phosphate with vascular and valvular calcification in moderate CKD. J Am Soc Nephrol. 2009;20(2):381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lezaic V, Tirmenstajn-Jankovic B, Bukvic D, Vujisic B, Perovic M, Novakovic N, et al. Efficacy of hyperphosphatemia control in the progression of chronic renal failure and the prevalence of cardiovascular calcification. Clin Nephrol. 2009;71(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  50. Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger SL, Young B, et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol. 2005;16(2):520–8.

    Article  CAS  PubMed  Google Scholar 

  51. Voormolen N, Noordzij M, Grootendorst DC, Beetz I, Sijpkens YW, van Manen JG, et al. High plasma phosphate as a risk factor for decline in renal function and mortality in pre-dialysis patients. Nephrol Dial Transplant. 2007;22(10):2909–16.

    Article  CAS  PubMed  Google Scholar 

  52. Portale AA, Wolf MS, Messinger S, Perwad F, Jüppner H, Warady BA, et al. Fibroblast growth factor 23 and risk of CKD progression in children. Clin J Am Soc Nephrol. 2016;11(11):1989–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rees L, Shroff RC. Phosphate binders in CKD: chalking out the differences. Pediatr Nephrol. 2010;25(3):385–94.

    Article  PubMed  Google Scholar 

  54. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 2000;342(20):1478–83.

    Article  CAS  PubMed  Google Scholar 

  55. Hahn D, Hodson EM, Craig JC. Interventions for metabolic bone disease in children with chronic kidney disease. Cochrane Database Syst Rev. 2015(11):CD008327-CD.

    Google Scholar 

  56. Hutchison AJ, Wilson RJ, Garafola S, Copley JB. Lanthanum carbonate: safety data after 10 years. Nephrology. 2016;21(12):987–94.

    Article  CAS  PubMed  Google Scholar 

  57. Floege J, Covic AC, Ketteler M, Rastogi A, Chong EM, Gaillard S, et al. A phase III study of the efficacy and safety of a novel iron-based phosphate binder in dialysis patients. Kidney Int. 2014;86(3):638–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lewis JB, Sika M, Koury MJ, Chuang P, Schulman G, Smith MT, et al. Ferric citrate controls phosphorus and delivers iron in patients on dialysis. J Am Soc Nephrol. 2015;26(2):493–503.

    Article  PubMed  CAS  Google Scholar 

  59. Klings ES, Machado RF, Barst RJ, Morris CR, Mubarak KK, Gordeuk VR, et al. An official American Thoracic Society clinical practice guideline: diagnosis, risk stratification, and management of pulmonary hypertension of sickle cell disease. Am J Respir Crit Care Med. 2014;189(6):727–40.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pollock CA, Ibels LS, Zhu FY, Warnant M, Caterson RJ, Waugh DA, et al. Protein intake in renal disease. J Am Soc Nephrol. 1997;8(5):777–83.

    Article  CAS  PubMed  Google Scholar 

  61. Kopple JD, Greene T, Chumlea WC, Hollinger D, Maroni BJ, Merrill D, et al. Relationship between nutritional status and the glomerular filtration rate: results from the MDRD study. Kidney Int. 2000;57(4):1688–703.

    Article  CAS  PubMed  Google Scholar 

  62. Ikizler TA, Greene JH, Wingard RL, Parker RA, Hakim RM. Spontaneous dietary protein intake during progression of chronic renal failure. J Am Soc Nephrol. 1995;6(5):1386–91.

    Article  CAS  PubMed  Google Scholar 

  63. McCusker FX, Teehan BP, Thorpe KE, Keshaviah PR, Churchill DN. How much peritoneal dialysis is required for the maintenance of a good nutritional state? Canada-USA (CANUSA) Peritoneal Dialysis Study Group. Kidney Int. 1996;56:S56–61.

    CAS  Google Scholar 

  64. Norman LJ, Coleman JE, Macdonald IA, Tomsett AM, Watson AR. Nutrition and growth in relation to severity of renal disease in children. Pediatr Nephrol. 2000;15(3–4):259–65.

    Article  CAS  PubMed  Google Scholar 

  65. Sedman A, Friedman A, Boineau F, Strife CF, Fine R. Nutritional management of the child with mild to moderate chronic renal failure. J Pediatr. 1996;129(2):s13–8.

    CAS  PubMed  Google Scholar 

  66. U.S. Renal Data Systems (USRDS). Comorbid conditions and correlations with mortality risk among 3,399 incident hemodialysis patients. Am J Kidney Dis. 1992;20(5 Suppl 2):32–8.

    Google Scholar 

  67. Churchill DN, Taylor DW, Cook RJ, LaPlante P, Barre P, Cartier P, et al. Canadian hemodialysis morbidity study. Am J Kidney Dis. 1992;19(3):214–34.

    Article  CAS  PubMed  Google Scholar 

  68. Lowrie EG, Lew NL. Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis. 1990;15(5):458–82.

    Article  CAS  PubMed  Google Scholar 

  69. Bergstrom J. Nutrition and mortality in hemodialysis. J Am Soc Nephrol. 1995;6(5):1329–41.

    Article  CAS  PubMed  Google Scholar 

  70. Iseki K, Uehara H, Nishime K, Tokuyama K, Yoshihara K, Kinjo K, et al. Impact of the initial levels of laboratory variables on survival in chronic dialysis patients. Am J Kidney Dis. 1996;28(4):541–8.

    Article  CAS  PubMed  Google Scholar 

  71. Avram MM, Mittman N, Bonomini L, Chattopadhyay J, Fein P. Markers for survival in dialysis: a seven-year prospective study. Am J Kidney Dis. 1995;26(1):209–19.

    Article  CAS  PubMed  Google Scholar 

  72. Barrett BJ, Parfrey PS, Morgan J, Barre P, Fine A, Goldstein MB, et al. Prediction of early death in end-stage renal disease patients starting dialysis. Am J Kidney Dis. 1997;29(2):214–22.

    Article  CAS  PubMed  Google Scholar 

  73. Kopple JD, Zhu X, Lew NL, Lowrie EG. Body weight-for-height relationships predict mortality in maintenance hemodialysis patients. Kidney Int. 1999;56(3):1136–48.

    Article  CAS  PubMed  Google Scholar 

  74. Leavey SF, Strawderman RL, Jones CA, Port FK, Held PJ. Simple nutritional indicators as independent predictors of mortality in hemodialysis patients. Am J Kidney Dis. 1998;31(6):997–1006.

    Article  CAS  PubMed  Google Scholar 

  75. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. J Am Soc Nephrol. 1996;7(2):198–207.

    Article  Google Scholar 

  76. Blake PG, Flowerdew G, Blake RM, Oreopoulos DG. Serum albumin in patients on continuous ambulatory peritoneal dialysis--predictors and correlations with outcomes. J Am Soc Nephrol. 1993;3(8):1501–7.

    Article  CAS  PubMed  Google Scholar 

  77. Pupim LB, Kent P, Caglar K, Shyr Y, Hakim RM, Ikizler TA. Improvement in nutritional parameters after initiation of chronic hemodialysis. Am J Kidney Dis. 2002;40(1):143–51.

    Article  PubMed  Google Scholar 

  78. Ishimura E, Okuno S, Kim M, Yamamoto T, Izumotani T, Otoshi T, et al. Increasing body fat mass in the first year of hemodialysis. J Am Soc Nephrol. 2001;12(9):1921–6.

    Article  CAS  PubMed  Google Scholar 

  79. Goldwasser P, Kaldas AI, Barth RH. Rise in serum albumin and creatinine in the first half year on hemodialysis. Kidney Int. 1999;56(6):2260–8.

    Article  CAS  PubMed  Google Scholar 

  80. Parker TF 3rd, Wingard RL, Husni L, Ikizler TA, Parker RA, Hakim RM. Effect of the membrane biocompatibility on nutritional parameters in chronic hemodialysis patients. Kidney Int. 1996;49(2):551–6.

    Article  PubMed  Google Scholar 

  81. Mehrotra R, Berman N, Alistwani A, Kopple JD. Improvement of nutritional status after initiation of maintenance hemodialysis. Am J Kidney Dis. 2002;40(1):133–42.

    Article  PubMed  Google Scholar 

  82. National Kidney Foundation. KDOQI clinical practice guidelines for peritoneal dialysis adequacy: 2006 update. Am J Kidney Dis. 2006;48(suppl 2):S91–S175.

    Google Scholar 

  83. Churchill DN, Blake PG, Jindal KK, Toffelmire EB, Goldstein MB. Clinical practice guidelines for initiation of dialysis. Canadian Society of Nephrology. J Am Soc Nephrol. 1999;10(Suppl 13):S289–91.

    PubMed  Google Scholar 

  84. Kelly J, Stanley M, Harris D. The CARI guidelines. Acceptance into dialysis guidelines. Nephrology. 2005;10(Suppl 4):S46–60.

    Article  PubMed  Google Scholar 

  85. Parekh RS, Flynn JT, Smoyer WE, Milne JL, Kershaw DB, Bunchman TE, et al. Improved growth in young children with severe chronic renal insufficiency who use specified nutritional therapy. J Am Soc Nephrol. 2001;12(11):2418–26.

    Article  CAS  PubMed  Google Scholar 

  86. Rees L, Brandt ML. Tube feeding in children with chronic kidney disease: technical and practical issues. Pediatr Nephrol. 2010;25(4):699–704.

    Article  PubMed  Google Scholar 

  87. Greenbaum LA, Warady BA, Furth SL. Current advances in chronic kidney disease in children: growth, cardiovascular, and neurocognitive risk factors. Semin Nephrol. 2009;29(4):425–34.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Feneberg R, Bürkel E, Sahm K, Weck K, Mehls O, Schaefer F. Long-term effects of tube feeding on growth and body composition in uremic infants. J Am Soc Nephrol. 2001;12:A2200.

    Google Scholar 

  89. Koch VH, Lippe BM, Nelson PA, Boechat MI, Sherman BM, Fine RN. Accelerated growth after recombinant human growth hormone treatment of children with chronic renal failure. J Pediatr. 1989;115(3):365–71.

    Article  CAS  PubMed  Google Scholar 

  90. Schaefer F, Haffner D, Wuhl E, Mehls O. Long-term experience with growth hormone treatment in children with chronic renal failure. Perit Dial Int. 1999;19(Suppl 2):S467–72.

    Article  PubMed  Google Scholar 

  91. Neu AM, Ho PL, McDonald RA, Warady BA. Chronic dialysis in children and adolescents. The 2001 NAPRTCS annual report. Pediatr Nephrol. 2002;17(8):656–63.

    Article  PubMed  Google Scholar 

  92. Fischbach M, Terzic J, Menouer S, Dheu C, Seuge L, Zalosczic A. Daily on line haemodiafiltration promotes catch-up growth in children on chronic dialysis. Nephrol Dial Transplant. 2010;25(3):867–73.

    Article  CAS  PubMed  Google Scholar 

  93. Janmaat CJ, van Diepen M, Krediet RT, Hemmelder MH, Dekker FW. Effect of glomerular filtration rate at dialysis initiation on survival in patients with advanced chronic kidney disease: what is the effect of lead-time bias? Clin Epidemiol. 2017;9:217–30.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Crews DC, Scialla JJ, Boulware LE, Navaneethan SD, Nally JV Jr, Liu X, et al. Comparative effectiveness of early versus conventional timing of dialysis initiation in advanced CKD. Am J Kidney Dis. 2014;63(5):806–15.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rosansky SJ, Eggers P, Jackson K, Glassock R, Clark WF. Early start of hemodialysis may be harmful. Arch Intern Med. 2011;171(5):396–403.

    Article  PubMed  Google Scholar 

  96. Cooper BA, Branley P, Bulfone L, Collins JF, Craig JC, Fraenkel MB, et al. A randomized, controlled trial of early versus late initiation of dialysis. N Engl J Med. 2010;363(7):609–19.

    Article  CAS  PubMed  Google Scholar 

  97. Winnicki E, Johansen KL, Cabana MD, Warady BA, McCulloch CE, Grimes B, et al. Higher eGFR at dialysis initiation is not associated with a survival benefit in children. J Am Soc Nephrol. 2019;30(8):1505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Okuda Y, Soohoo M, Tang Y, Obi Y, Laster M, Rhee CM, et al. Estimated GFR at Dialysis initiation and mortality in children and adolescents. Am J Kidney Dis. 2019;73(6):797–805.

    Article  PubMed  Google Scholar 

  99. Preka E, Bonthuis M, Harambat J, Jager KJ, Groothoff JW, Baiko S, et al. Association between timing of dialysis initiation and clinical outcomes in the paediatric population: an ESPN/ERA-EDTA registry study. Nephrol Dial Transplant. 2019;34(11):1932–40.

    Article  PubMed  Google Scholar 

  100. Li Y, Jin Y, Kapke A, Pearson J, Saran R, Port FK, et al. Explaining trends and variation in timing of dialysis initiation in the United States. Medicine. 2017;96(20):e6911–e.

    Article  Google Scholar 

  101. Ferguson TW, Garg AX, Sood MM, Rigatto C, Chau E, Komenda P, et al. Association between the publication of the initiating dialysis early and late trial and the timing of dialysis initiation in Canada. JAMA Intern Med. 2019;179(7):934–41.

    Article  PubMed  PubMed Central  Google Scholar 

  102. van Stralen KJ, Tizard EJ, Jager KJ, Schaefer F, Vondrak K, Groothoff JW, et al. Determinants of eGFR at start of renal replacement therapy in paediatric patients. Nephrol Dial Transplant. 2010;25(10):3325–32.

    Article  PubMed  Google Scholar 

  103. Dart AB, Zappitelli M, Sood MM, Alexander RT, Arora S, Erickson RL, et al. Variation in estimated glomerular filtration rate at dialysis initiation in children. Pediatr Nephrol. 2017;32(2):331–40.

    Article  PubMed  Google Scholar 

  104. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.

    Google Scholar 

  105. National Kidney Foundation KDOQI Clinical Practice Guideline for Hemodialysis Adequacy. 2015 update. Am J Kidney Dis. 2015;66(5):884–930.

    Article  Google Scholar 

  106. Tattersall J, Dekker F, Heimburger O, Jager KJ, Lameire N, Lindley E, et al. When to start dialysis: updated guidance following publication of the Initiating Dialysis Early and Late (IDEAL) study. Nephrol Dial Transplant. 2011;26(7):2082–6.

    Article  PubMed  Google Scholar 

  107. Nesrallah GE, Mustafa RA, Clark WF, Bass A, Barnieh L, Hemmelgarn BR, et al. Canadian Society of Nephrology 2014 clinical practice guideline for timing the initiation of chronic dialysis. CMAJ. 2014;186(2):112–7.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bonomini V, Feletti C, Scolari MP, Stefoni S. Benefits of early initiation of dialysis. Kidney Int. 1985;17(9):S57–9.

    CAS  Google Scholar 

  109. Tattersall J, Greenwood R, Farrington K. Urea kinetics and when to commence dialysis. Am J Nephrol. 1995;15(4):283–9.

    Article  CAS  PubMed  Google Scholar 

  110. Churchill DN. An evidence-based approach to earlier initiation of dialysis. Am J Kidney Dis. 1997;30(6):899–906.

    Article  CAS  PubMed  Google Scholar 

  111. Van Biesen W, Wiedemann M, Lameire N. End-stage renal disease treatment: a European perspective. J Am Soc Nephrol. 1998;9(12 Suppl):S55–62.

    PubMed  Google Scholar 

  112. Mehrotra R, Lee J, Elivera H, Ahmed Z. Trends in initiation of dialysis in an urban dialysis clinic in the United States: a long way from dialysis outcomes quality initiative guidelines. Adv Perit Dial. 1999;15:138–43.

    CAS  PubMed  Google Scholar 

  113. Obrador GT, Arora P, Kausz AT, Ruthazer R, Pereira BJ, Levey AS. Level of renal function at the initiation of dialysis in the U.S. end-stage renal disease population. Kidney Int. 1999;56(6):2227–35.

    Article  CAS  PubMed  Google Scholar 

  114. Beddhu S, Samore MH, Roberts MS, Stoddard GJ, Ramkumar N, Pappas LM, et al. Impact of timing of initiation of dialysis on mortality. J Am Soc Nephrol. 2003;14(9):2305–12.

    Article  PubMed  Google Scholar 

  115. Kazmi WH, Gilbertson DT, Obrador GT, Guo H, Pereira BJ, Collins AJ, et al. Effect of comorbidity on the increased mortality associated with early initiation of dialysis. Am J Kidney Dis. 2005;46(5):887–96.

    Article  PubMed  Google Scholar 

  116. Lassalle M, Labeeuw M, Frimat L, Villar E, Joyeux V, Couchoud C, et al. Age and comorbidity may explain the paradoxical association of an early dialysis start with poor survival. Kidney Int. 2010;77(8):700–7.

    Article  PubMed  Google Scholar 

  117. Beddhu S, Pappas LM, Ramkumar N, Samore M. Effects of body size and body composition on survival in hemodialysis patients. J Am Soc Nephrol. 2003;14(9):2366–72.

    Article  PubMed  Google Scholar 

  118. Korevaar JC, Jansen MA, Dekker FW, Jager KJ, Boeschoten EW, Krediet RT, et al. When to initiate dialysis: effect of proposed US guidelines on survival. Lancet. 2001;358(9287):1046–50.

    Article  CAS  PubMed  Google Scholar 

  119. Traynor JP, Simpson K, Geddes CC, Deighan CJ, Fox JG. Early initiation of dialysis fails to prolong survival in patients with end-stage renal failure. J Am Soc Nephrol. 2002;13:2125–32.

    Article  PubMed  Google Scholar 

  120. Chow KM, Szeto CC, Law MC, Kwan BC, Leung CB, Li PK. Impact of early nephrology referral on mortality and hospitalization in peritoneal dialysis patients. Perit Dial Int. 2008;28(4):371–6.

    Article  PubMed  Google Scholar 

  121. Hasegawa T, Bragg-Gresham JL, Yamazaki S, Fukuhara S, Akizawa T, Kleophas W, et al. Greater first-year survival on hemodialysis in facilities in which patients are provided earlier and more frequent pre-nephrology visits. Clin J Am Soc Nephrol. 2009;4(3):595–602.

    Article  PubMed  PubMed Central  Google Scholar 

  122. McClellan WM, Wasse H, McClellan AC, Kipp A, Waller LA, Rocco MV. Treatment center and geographic variability in pre-ESRD care associate with increased mortality. J Am Soc Nephrol. 2009;20(5):1078–85.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lee BJ, Forbes K. The role of specialists in managing the health of populations with chronic illness: the example of chronic kidney disease. BMJ. 2009;339:b2395.

    Article  PubMed  Google Scholar 

  124. Jander A, Nowicki M, Tkaczyk M, Roszkowska-Blaim M, Jarmoliński T, Marczak E, et al. Does a late referral to a nephrologist constitute a problem in children starting renal replacement therapy in Poland?--a nationwide study. Nephrol Dial Transplant. 2006;21(4):957–61.

    Article  PubMed  Google Scholar 

  125. Andreoli SP, Langefeld CD, Stadler S, Smith P, Sears A, West K. Risks of peritoneal membrane failure in children undergoing long-term peritoneal dialysis. Pediatr Nephrol. 1993;7(5):543–7.

    Article  CAS  PubMed  Google Scholar 

  126. Termorshuizen F, Dekker FW, van Manen JG, Korevaar JC, Boeschoten EW, Krediet RT. Relative contribution of residual renal function and different measures of adequacy to survival in hemodialysis patients: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. J Am Soc Nephrol. 2004;15(4):1061–70.

    Article  PubMed  Google Scholar 

  127. Paniagua R, Amato D, Vonesh E, Correa-Rotter R, Ramos A, Moran J, et al. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol. 2002;13(5):1307–20.

    Article  CAS  PubMed  Google Scholar 

  128. Rottembourg J. Residual renal function and recovery of renal function in patients treated by CAPD. Kidney Int. 1993;40:S106–10.

    CAS  Google Scholar 

  129. Lang SM, Bergner A, Topfer M, Schiffl H. Preservation of residual renal function in dialysis patients: effects of dialysis-technique-related factors. Perit Dial Int. 2001;21(1):52–7.

    Article  CAS  PubMed  Google Scholar 

  130. Schulman G. The role of hemodialysis and peritoneal dialysis for the early initiation of dialysis. Blood Purif. 2001;19(2):175–8.

    Article  CAS  PubMed  Google Scholar 

  131. Feber J, Scharer K, Schaefer F, Mikova M, Janda J. Residual renal function in children on haemodialysis and peritoneal dialysis therapy. Pediatr Nephrol. 1994;8(5):579–83.

    Article  CAS  PubMed  Google Scholar 

  132. Fischbach M, Terzic J, Menouer S, Soulami K, Dangelser C, Helmstetter A, et al. Effects of automated peritoneal dialysis on residual daily urinary volume in children. Adv Perit Dial. 2001;17:269–73.

    CAS  PubMed  Google Scholar 

  133. Hufnagel G, Michel C, Queffeulou G, Skhiri H, Damieri H, Mignon F. The influence of automated peritoneal dialysis on the decrease in residual renal function. Nephrol Dial Transplant. 1999;14(5):1224–8.

    Article  CAS  PubMed  Google Scholar 

  134. Hiroshige K, Yuu K, Soejima M, Takasugi M, Kuroiwa A. Rapid decline of residual renal function in patients on automated peritoneal dialysis. Perit Dial Int. 1996;16(3):307–15.

    Article  CAS  PubMed  Google Scholar 

  135. de Fijter CW, ter Wee PM, Donker AJ. The influence of automated peritoneal dialysis on the decrease in residual renal function. Nephrol Dial Transplant. 2000;15(7):1094–6.

    Article  PubMed  Google Scholar 

  136. McDonald SP, Craig JC. Australian, New Zealand Paediatric Nephrology A. Long-term survival of children with end-stage renal disease. N Engl J Med. 2004;350(26):2654–62.

    Article  CAS  PubMed  Google Scholar 

  137. Chesnaye NC, van Stralen KJ, Bonthuis M, Harambat J, Groothoff JW, Jager KJ. Survival in children requiring chronic renal replacement therapy. Pediatr Nephrol. 2018;33(4):585–94.

    Article  PubMed  Google Scholar 

  138. Weaver DJ Jr, Somers MJG, Martz K, Mitsnefes MM. Clinical outcomes and survival in pediatric patients initiating chronic dialysis: a report of the NAPRTCS registry. Pediatr Nephrol. 2017;32(12):2319–30.

    Article  PubMed  Google Scholar 

  139. Litwin M, Grenda R, Prokurat S, Abuauba M, Latoszynska J, Jobs K, et al. Patient survival and causes of death on hemodialysis and peritoneal dialysis--single-center study. Pediatr Nephrol. 2001;16(12):996–1001.

    Article  CAS  PubMed  Google Scholar 

  140. Fenton SS, Schaubel DE, Desmeules M, Morrison HI, Mao Y, Copleston P, et al. Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates. Am J Kidney Dis. 1997;30(3):334–42.

    Article  CAS  PubMed  Google Scholar 

  141. Collins AJ, Hao W, Xia H, Ebben JP, Everson SE, Constantini EG, et al. Mortality risks of peritoneal dialysis and hemodialysis. Am J Kidney Dis. 1999;34(6):1065–74.

    Article  CAS  PubMed  Google Scholar 

  142. Coles GA, Williams JD. What is the place of peritoneal dialysis in the integrated treatment of renal failure? Kidney Int. 1998;54(6):2234–40.

    Article  CAS  PubMed  Google Scholar 

  143. Alloatti S, Manes M, Paternoster G, Gaiter AM, Molino A, Rosati C. Peritoneal dialysis compared with hemodialysis in the treatment of end-stage renal disease. J Nephrol. 2000;13(5):331–42.

    CAS  PubMed  Google Scholar 

  144. Davies SJ, Phillips L, Griffiths AM, Russell LH, Naish PF, Russell GI. What really happens to people on long-term peritoneal dialysis? Kidney Int. 1998;54(6):2207–17.

    Article  CAS  PubMed  Google Scholar 

  145. Wang T, Heimburger O, Waniewski J, Bergstrom J, Lindholm B. Increased peritoneal permeability is associated with decreased fluid and small-solute removal and higher mortality in CAPD patients. Nephrol Dial Transplant. 1998;13(5):1242–9.

    Article  CAS  PubMed  Google Scholar 

  146. Schaefer F, Klaus G, Mehls O. Peritoneal transport properties and dialysis dose affect growth and nutritional status in children on chronic peritoneal dialysis. Mid-European Pediatric Peritoneal Dialysis Study Group. J Am Soc Nephrol. 1999;10(8):1786–92.

    Article  CAS  PubMed  Google Scholar 

  147. Maiorca R, Vonesh E, Cancarini GC, Cantaluppi A, Manili L, Brunori G, et al. A six-year comparison of patient and technique survivals in CAPD and HD. Kidney Int. 1988;34(4):518–24.

    Article  CAS  PubMed  Google Scholar 

  148. Vonesh EF, Moran J. Mortality in end-stage renal disease: a reassessment of differences between patients treated with hemodialysis and peritoneal dialysis. J Am Soc Nephrol. 1999;10(2):354–65.

    Article  CAS  PubMed  Google Scholar 

  149. Tanna MM, Vonesh EF, Korbet SM. Patient survival among incident peritoneal dialysis and hemodialysis patients in an urban setting. Am J Kidney Dis. 2000;36(6):1175–82.

    Article  CAS  PubMed  Google Scholar 

  150. Al-Hermi BE, Al-Saran K, Secker D, Geary DF. Hemodialysis for end-stage renal disease in children weighing less than 10 kg. Pediatr Nephrol. 1999;13(5):401–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima S. Zahr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zahr, R.S., Greenbaum, L.A., Schaefer, F. (2021). The Decision to Initiate Dialysis in Children and Adolescents. In: Warady, B.A., Alexander, S.R., Schaefer, F. (eds) Pediatric Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-030-66861-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66861-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66860-0

  • Online ISBN: 978-3-030-66861-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics