Skip to main content

Advertisement

Log in

Measuring glomerular filtration rate in children; can cystatin C replace established methods? A review

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Our aim was to evaluate published methods that use serum cystatin C (s-CysC) for measuring glomerular filtration rate (GFR) in children and to discuss advantages and limitations of s-CysC and of established GFR methods. A comprehensive literature review of clinical studies in children evaluating s-CysC or CysC-based formulas and plasma creatinine or creatinine-based formulas against an exogenous reference method using receiver operating characteristics (ROC) curves or Bland–Altman plots is presented. The comparison of s-CysC with plasma creatinine indicated that s-CysC was superior to plasma creatinine in five of 13 studies; four studies showed no difference, and, in four studies, no statistical comparison was made. Comparison of s-CysC and the Schwartz formula showed that s-CysC was superior to the Schwartz formula in two of seven studies; two studies demonstrated no difference, and, in one study, the Schwartz formula was superior to s-CysC. In two studies no statistical comparison was made. The CysC-based prediction equations all had high accuracy but low agreement when compared with a reference GFR, in the range of 30–40% at best. S-CysC is most likely superior to plasma creatinine and at least equal to creatinine-based formulas. CysC-based prediction equations are at least as good as creatinine-based formulas but cannot replace exogenous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piepsz A, Colarinha P, Gordon I, Hahn K, Olivier P, Sixt R, van Velzen J, Paediatric Committee of the European Association of Nuclear Medicine (2001) Guidelines for glomerular filtration rate determination in children. Eur J Nucl Med 28:BP31–BP36

    CAS  PubMed  Google Scholar 

  2. Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38:1933–1953

    Article  CAS  PubMed  Google Scholar 

  3. Grubb A, Lofberg H (1982) Human gamma-trace, a basic microprotein: amino acid sequence and presence in the adenohypophysis. Proc Natl Acad Sci U S A 79:3024–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226

    Article  CAS  PubMed  Google Scholar 

  5. Roos JF, Doust J, Tett SE, Kirkpatrick CM (2007) Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children–a meta-analysis. Clin Biochem 40:383–391

    Article  CAS  PubMed  Google Scholar 

  6. Filler G, Bökenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A (2005) Cystatin C as a marker of GFR—history, indications, and future research. Clin Biochem 38:1–8

    Article  CAS  PubMed  Google Scholar 

  7. Rahn KH, Heidenreich S, Bruckner D (1999) How to assess glomerular function and damage in humans. J Hypertens 17:309–317

    Article  CAS  PubMed  Google Scholar 

  8. Brown SC, O’Reilly PH (1991) Iohexol clearance for the determination of glomerular filtration rate in clinical practice: evidence for a new gold standard. J Urol 146:675–679

    Article  CAS  PubMed  Google Scholar 

  9. Gaspari F, Perico N, Ruggenenti P, Mosconi L, Amuchastegui CS, Guerini E, Daina E, Remuzzi G (1995) Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol 6:257–263

    Article  CAS  PubMed  Google Scholar 

  10. Blaufox MD, Aurell M, Bubeck B, Fommei E, Piepsz A, Russell C, Taylor A, Thomsen HS, Volterrani D (1996) Report of the Radionuclides in Nephrourology Committee on renal clearance. J Nucl Med 37:1883–1890

    CAS  PubMed  Google Scholar 

  11. Brochner-Mortensen J, Haahr J, Christoffersen J (1974) A simple method for accurate assessment of the glomerular filtration rate in children. Scand J Clin Lab Invest 33:140–143

    Article  CAS  PubMed  Google Scholar 

  12. Chantler C, Barratt TM (1972) Estimation of glomerular filtration rate from plasma clearance of 51-chromium edetic acid. Arch Dis Child 47:613–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ham HR, Piepsz A (1991) Estimation of glomerular filtration rate in infants and in children using a single-plasma sample method. J Nucl Med 32:1294–1297

    CAS  PubMed  Google Scholar 

  14. Groth S, Aasted M (1984) 51Cr-EDTA clearance determined by one plasma sample in children. Clin Physiol 4:75–83

    Article  CAS  PubMed  Google Scholar 

  15. Fjeldborg P, Brochner-Mortensen J (1986) Determination of 51Cr-EDTA clearance in infants by a single capillary blood sample. Scand J Clin Lab Invest 46:335–340

    Article  CAS  PubMed  Google Scholar 

  16. Brochner-Mortensen J (1985) Current status on assessment and measurement of glomerular filtration rate. Clin Physiol 5:1–17

    Article  CAS  PubMed  Google Scholar 

  17. Henriksen JH, Brochner-Mortensen J, Malchow-Moller A, Schlichting P (1980) Over-estimation of glomerular filtration rate by single injection [51Cr]EDTA plasma clearance determination in patients with ascites. Scand J Clin Lab Invest 40:279–284

    Article  CAS  PubMed  Google Scholar 

  18. Rehling M, Moller ML, Lund JO, Jensen KB, Thamdrup B, Trap-Jensen J (1985) 99mTc-DTPA gamma-camera renography: normal values and rapid determination of single-kidney glomerular filtration rate. Eur J Nucl Med 11:1–6

    Article  CAS  PubMed  Google Scholar 

  19. Itoh K, Tsushima S, Tsukamoto E, Tamaki N (2000) Reappraisal of single-sample and gamma camera methods for determination of the glomerular filtration rate with 99mTc-DTPA. Ann Nucl Med 14:143–150

    Article  CAS  PubMed  Google Scholar 

  20. Gates GF (1982) Glomerular filtration rate: estimation from fractional renal accumulation of 99mTc-DTPA (stannous). AJR Am J Roentgenol 138:565–570

    Article  CAS  PubMed  Google Scholar 

  21. Prigent A, Cosgriff P, Gates GF, Granerus G, Fine EJ, Itoh K, Peters M, Piepsz A, Rehling M, Rutland M, Taylor A Jr (1999) Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: International Consensus Committee from the Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med 29:146–159

    Article  CAS  PubMed  Google Scholar 

  22. Hood B, Attman PO, Ahlmen J, Jagenburg R (1971) Renal hemodynamics and limitations of creatinine clearance in determining filtration rate in glomerular disease. Scand J Urol Nephrol 5:154–161

    Article  CAS  PubMed  Google Scholar 

  23. Shemesh O, Golbetz H, Kriss JP, Myers BD (1985) Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 28:830–838

    Article  CAS  PubMed  Google Scholar 

  24. Bökenkamp A, Domanetzki M, Zinck R, Schumann G, Brodehl J (1998) Reference values for cystatin C serum concentrations in children. Pediatr Nephrol 12:125–129

    Article  PubMed  Google Scholar 

  25. Finney H, Newman DJ, Thakkar H, Fell JM, Price CP (2000) Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates, and older children. Arch Dis Child 82:71–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Helin I, Axenram M, Grubb A (1998) Serum cystatin C as a determinant of glomerular filtration rate in children. Clin Nephrol 49:221–225

    CAS  PubMed  Google Scholar 

  27. Randers E, Krue S, Erlandsen EJ, Danielsen H, Hansen LG (1999) Reference interval for serum cystatin C in children. Clin Chem 45:1856–1858

    Article  CAS  PubMed  Google Scholar 

  28. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34:571–590

    Article  CAS  PubMed  Google Scholar 

  29. Piepsz A, Tondeur M, Ham H (2006) Revisiting normal (51)Cr-ethylenediaminetetraacetic acid clearance values in children. Eur J Nucl Med Mol Imaging 33:1477–1482

    Article  CAS  PubMed  Google Scholar 

  30. Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM (1976) Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child 51:875–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263

    Article  CAS  PubMed  Google Scholar 

  32. Brion LP, Boeck MA, Gauthier B, Nussbaum MP, Schwartz GJ (1989) Estimation of glomerular filtration rate in anorectic adolescents. Pediatr Nephrol 3:16–21

    Article  CAS  PubMed  Google Scholar 

  33. Hari P, Bagga A, Mahajan P, Lakshmy R (2007) Effect of malnutrition on serum creatinine and cystatin C levels. Pediatr Nephrol 22:1757–1761

    Article  PubMed  Google Scholar 

  34. Panteghini M, IFCC Scientific Division (2008) Enzymatic assays for creatinine: time for action. Clin Chem Lab Med 46:567–572

    CAS  PubMed  Google Scholar 

  35. Siekmann L (2007) Requirements for reference (calibration) laboratories in laboratory medicine. Clin Biochem Rev 28:149–154

    PubMed  PubMed Central  Google Scholar 

  36. Seikaly MG, Browne R, Bajaj G, Arant BS Jr (1996) Limitations to body length/serum creatinine ratio as an estimate of glomerular filtration in children. Pediatr Nephrol 10:709–711

    Article  CAS  PubMed  Google Scholar 

  37. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  CAS  PubMed  Google Scholar 

  38. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  39. Pierrat A, Gravier E, Saunders C, Caira MV, Aït-Djafer Z, Legras B, Mallié JP (2003) Predicting GFR in children and adults: a comparison of the Cockcroft-Gault, Schwartz, and modification of diet in renal disease formulas. Kidney Int 64:1425–1436

    Article  PubMed  Google Scholar 

  40. Filler G, Foster J, Acker A, Lepage N, Akbari A, Ehrich JH (2005) The Cockcroft-Gault formula should not be used in children. Kidney Int 67:2321–2324

    Article  PubMed  Google Scholar 

  41. Aufricht C, Balbisi A, Gerdov C, Muller T, Lothaller MA, Balzar E (1995) Formula creatinine clearance as a substitute for 24-hour creatine clearance in children with kidney transplantation. Klin Padiatr 207:59–62

    Article  CAS  PubMed  Google Scholar 

  42. Grubb A, Simonsen O, Sturfelt G, Truedsson L, Thysell H (1985) Serum concentration of cystatin C, factor D and beta 2-microglobulin as a measure of glomerular filtration rate. Acta Med Scand 218:499–503

    Article  CAS  PubMed  Google Scholar 

  43. Clausen J (1961) Proteins in normal cerebrospinal fluid not found in serum. Proc Soc Exp Biol Med 107:170–172

    Article  CAS  PubMed  Google Scholar 

  44. Butler EA, Flynn FV (1961) The occurrence of post-gamma protein in urine: a new protein abnormality. J Clin Pathol 14:172–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hochwald GM, Thorbecke GJ (1962) Use of an antiserum against cerebrospinal fluid in demonstration of trace proteins in biological fluids. Proc Soc Exp Biol Med 109:91–95

    Article  CAS  PubMed  Google Scholar 

  46. Brzin J, Popovic T, Turk V, Borchart U, Machleidt W (1984) Human cystatin, a new protein inhibitor of cysteine proteinases. Biochem Biophys Res Commun 118:103–109

    Article  CAS  PubMed  Google Scholar 

  47. Barrett AJ, Davies ME, Grubb A (1984) The place of human gamma-trace (cystatin C) amongst the cysteine proteinase inhibitors. Biochem Biophys Res Commun 120:631–636

    Article  CAS  PubMed  Google Scholar 

  48. Abrahamson M, Islam MQ, Szpirer J, Szpirer C, Levan G (1989) The human cystatin C gene (CST3), mutated in hereditary cystatin C amyloid angiopathy, is located on chromosome 20. Hum Genet 82:223–226

    Article  CAS  PubMed  Google Scholar 

  49. Saitoh E, Sabatini LM, Eddy RL, Shows TB, Azen EA, Isemura S, Sanada K (1989) The human cystatin C gene (CST3) is a member of the cystatin gene family which is localized on chromosome 20. Biochem Biophys Res Commun 162:1324–1331

    Article  CAS  PubMed  Google Scholar 

  50. Abrahamson M, Olafsson I, Palsdottir A, Ulvsback M, Lundwall A, Jensson O, Grubb A (1990) Structure and expression of the human cystatin C gene. Biochem J 268:287–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jacobsson B, Lignelid H, Bergerheim US (1995) Transthyretin and cystatin C are catabolized in proximal tubular epithelial cells and the proteins are not useful as markers for renal cell carcinomas. Histopathology 26:559–564

    Article  CAS  PubMed  Google Scholar 

  52. Bökenkamp A, Herget-Rosenthal S, Bökenkamp R (2006) Cystatin C, kidney function and cardiovascular disease. Pediatr Nephrol 21:1223–1230

    Article  PubMed  Google Scholar 

  53. Simonsen O, Grubb A, Thysell H (1985) The blood serum concentration of cystatin C (gamma-trace) as a measure of the glomerular filtration rate. Scand J Clin Lab Invest 45:97–101

    Article  CAS  PubMed  Google Scholar 

  54. Tenstad O, Roald AB, Grubb A, Aukland K (1996) Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest 56:409–414

    Article  CAS  PubMed  Google Scholar 

  55. Tkaczyk M, Nowicki M, Lukamowicz J (2004) Increased cystatin C concentration in urine of nephrotic children. Pediatr Nephrol 19:1278–1280

    Article  PubMed  Google Scholar 

  56. Herget-Rosenthal S, van Wijk JA, Brocker-Preuss M, Bökenkamp A (2007) Increased urinary cystatin C reflects structural and functional renal tubular impairment independent of glomerular filtration rate. Clin Biochem 40:946–951

    Article  CAS  PubMed  Google Scholar 

  57. Herget-Rosenthal S, Feldkamp T, Volbracht L, Kribben A (2004) Measurement of urinary cystatin C by particle-enhanced nephelometric immunoassay: precision, interferences, stability and reference range. Ann Clin Biochem 41:111–118

    Article  CAS  PubMed  Google Scholar 

  58. Uchida K, Gotoh A (2002) Measurement of cystatin-C and creatinine in urine. Clin Chim Acta 323:121–128

    Article  CAS  PubMed  Google Scholar 

  59. Thielemans N, Lauwerys R, Bernard A (1994) Competition between albumin and low-molecular-weight proteins for renal tubular uptake in experimental nephropathies. Nephron 66:453–458

    Article  CAS  PubMed  Google Scholar 

  60. Herget-Rosenthal S, Poppen D, Husing J, Marggraf G, Pietruck F, Jakob HG, Philipp T, Kribben A (2004) Prognostic value of tubular proteinuria and enzymuria in nonoliguric acute tubular necrosis. Clin Chem 50:552–558

    Article  CAS  PubMed  Google Scholar 

  61. Sjostrom P, Tidman M, Jones I (2005) Determination of the production rate and non-renal clearance of cystatin C and estimation of the glomerular filtration rate from the serum concentration of cystatin C in humans. Scand J Clin Lab Invest 65:111–124

    Article  CAS  PubMed  Google Scholar 

  62. Risch L, Blumberg A, Huber A (1999) Rapid and accurate assessment of glomerular filtration rate in patients with renal transplants using serum cystatin C. Nephrol Dial Transplant 14:1991–1996

    Article  CAS  PubMed  Google Scholar 

  63. Keevil BG, Kilpatrick ES, Nichols SP, Maylor PW (1998) Biological variation of cystatin C: implications for the assessment of glomerular filtration rate. Clin Chem 44:1535–1539

    Article  CAS  PubMed  Google Scholar 

  64. Le Bricon T, Leblanc I, Benlakehal M, Gay-Bellile C, Erlich D, Boudaoud S (2005) Evaluation of renal function in intensive care: plasma cystatin C vs. creatinine and derived glomerular filtration rate estimates. Clin Chem Lab Med 43:953–957

    Article  PubMed  CAS  Google Scholar 

  65. Bandaranayake N, Ankrah-Tetteh T, Wijeratne S, Swaminathan R (2007) Intra-individual variation in creatinine and cystatin C. Clin Chem Lab Med 45:1237–1239

    Article  CAS  PubMed  Google Scholar 

  66. Bökenkamp A, Ozden N, Dieterich C, Schumann G, Ehrich JH, Brodehl J (1999) Cystatin C and creatinine after successful kidney transplantation in children. Clin Nephrol 52:371–376

    PubMed  Google Scholar 

  67. Podracka L, Feber J, Lepage N, Filler G (2005) Intra-individual variation of cystatin C and creatinine in pediatric solid organ transplant recipients. Pediatr Transplant 9:28–32

    Article  CAS  PubMed  Google Scholar 

  68. Sambasivan AS, Lepage N, Filler G (2005) Cystatin C intrapatient variability in children with chronic kidney disease is less than serum creatinine. Clin Chem 51:2215–2216

    Article  CAS  PubMed  Google Scholar 

  69. Brochner-Mortensen J, Rohbrandt K, Lauritzen RB (1977) Precision of single injection (51Cr)EDTA plasma clearance and endogenous creatinine clearance determinations in children. Scand J Clin Lab Invest 37:625–629

    Article  CAS  PubMed  Google Scholar 

  70. Harmoinen A, Ylinen E, Ala-Houhala M, Janas M, Kaila M, Kouri T (2000) Reference intervals for cystatin C in pre- and full-term infants and children. Pediatr Nephrol 15:105–108

    Article  CAS  PubMed  Google Scholar 

  71. Bökenkamp A, Dieterich C, Dressler F, Muhlhaus K, Gembruch U, Bald R, Kirschstein M (2001) Fetal serum concentrations of cystatin C and beta2-microglobulin as predictors of postnatal kidney function. Am J Obstet Gynecol 185:468–475

    Article  PubMed  Google Scholar 

  72. Cataldi L, Mussap M, Bertelli L, Ruzzante N, Fanos V, Plebani M (1999) Cystatin C in healthy women at term pregnancy and in their infant newborns: relationship between maternal and neonatal serum levels and reference values. Am J Perinatol 16:287–295

    Article  CAS  PubMed  Google Scholar 

  73. Fischbach M, Graff V, Terzic J, Bergere V, Oudet M, Hamel G (2002) Impact of age on reference values for serum concentration of cystatin C in children. Pediatr Nephrol 17:104–106

    Article  CAS  PubMed  Google Scholar 

  74. Bökenkamp A, Domanetzki M, Zinck R, Schumann G, Byrd D, Brodehl J (1998) Cystatin C—a new marker of glomerular filtration rate in children independent of age and height. Pediatrics 101:875–881

    Article  PubMed  Google Scholar 

  75. Filler G, Witt I, Priem F, Ehrich JH, Jung K (1997) Are cystatin C and beta 2-microglobulin better markers than serum creatinine for prediction of a normal glomerular filtration rate in pediatric subjects? Clin Chem 43:1077–1078

    Article  CAS  PubMed  Google Scholar 

  76. Bökenkamp A, Franke I, Schlieber M, Duker G, Schmitt J, Buderus S, Lentze MJ, Stoffel-Wagner B (2007) Beta-trace protein–a marker of kidney function in children: “Original research communication-clinical investigation". Clin Biochem 40:969–975

    Article  PubMed  CAS  Google Scholar 

  77. Galteau MM, Guyon M, Gueguen R, Siest G (2001) Determination of serum cystatin C: biological variation and reference values. Clin Chem Lab Med 39:850–857

    Article  CAS  PubMed  Google Scholar 

  78. Treiber M, Pecovnik-Balon B, Gorenjak M (2006) Cystatin C versus creatinine as a marker of glomerular filtration rate in the newborn. Wien Klin Wochenschr 118 [Suppl 2]:66–70

    Article  CAS  PubMed  Google Scholar 

  79. Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, de Jong PE (2004) Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 65:1416–1421

    Article  CAS  PubMed  Google Scholar 

  80. Koenig W, Twardella D, Brenner H, Rothenbacher D (2005) Plasma concentrations of cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events: more than simply a marker of glomerular filtration rate. Clin Chem 51:321–327

    Article  CAS  PubMed  Google Scholar 

  81. Shlipak MG, Katz R, Cushman M, Sarnak MJ, Stehman-Breen C, Psaty BM, Siscovick D, Tracy RP, Newman A, Fried L (2005) Cystatin-C and inflammatory markers in the ambulatory elderly. Am J Med 118:1416

    Article  PubMed  Google Scholar 

  82. Randers E, Kornerup K, Erlandsen EJ, Hasling C, Danielsen H (2001) Cystatin C levels in sera of patients with acute infectious diseases with high C-reactive protein levels. Scand J Clin Lab Invest 61:333–335

    Article  CAS  PubMed  Google Scholar 

  83. Bökenkamp A, Laarman CA, Braam KI, van Wijk JA, Kors WA, Kool M, de Valk J, Bouman AA, Spreeuwenberg MD, Stoffel-Wagner B (2007) Effect of corticosteroid therapy on low-molecular weight protein markers of kidney function. Clin Chem 53:2219–2221

    Article  PubMed  CAS  Google Scholar 

  84. Cimerman N, Brguljan PM, Krasovec M, Suskovic S, Kos J (2000) Serum cystatin C, a potent inhibitor of cysteine proteinases, is elevated in asthmatic patients. Clin Chim Acta 300:83–95

    Article  CAS  PubMed  Google Scholar 

  85. Bjarnadottir M, Grubb A, Olafsson I (1995) Promoter-mediated, dexamethasone-induced increase in cystatin C production by HeLa cells. Scand J Clin Lab Invest 55:617–623

    Article  CAS  PubMed  Google Scholar 

  86. Risch L, Herklotz R, Blumberg A, Huber AR (2001) Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients. Clin Chem 47:2055–2059

    Article  CAS  PubMed  Google Scholar 

  87. Bökenkamp A, van Wijk JA, Lentze MJ, Stoffel-Wagner B (2002) Effect of corticosteroid therapy on serum cystatin C and beta2-microglobulin concentrations. Clin Chem 48:1123–1126

    Article  PubMed  Google Scholar 

  88. Manetti L, Pardini E, Genovesi M, Campomori A, Grasso L, Morselli LL, Lupi I, Pellegrini G, Bartalena L, Bogazzi F, Martino E (2005) Thyroid function differently affects serum cystatin C and creatinine concentrations. J Endocrinol Invest 28:346–349

    Article  CAS  PubMed  Google Scholar 

  89. Fricker M, Wiesli P, Brandle M, Schwegler B, Schmid C (2003) Impact of thyroid dysfunction on serum cystatin C. Kidney Int 63:1944–1947

    Article  CAS  PubMed  Google Scholar 

  90. Wiesli P, Schwegler B, Spinas GA, Schmid C (2003) Serum cystatin C is sensitive to small changes in thyroid function. Clin Chim Acta 338:87–90

    Article  CAS  PubMed  Google Scholar 

  91. den Hollander JG, Wulkan RW, Mantel MJ, Berghout A (2003) Is cystatin C a marker of glomerular filtration rate in thyroid dysfunction? Clin Chem 49:1558–1559

    Article  CAS  PubMed  Google Scholar 

  92. Jayagopal V, Keevil BG, Atkin SL, Jennings PE, Kilpatrick ES (2003) Paradoxical changes in cystatin C and serum creatinine in patients with hypo- and hyperthyroidism. Clin Chem 49:680–681

    Article  CAS  PubMed  Google Scholar 

  93. Villabona C, Sahun M, Roca M, Mora J, Gomez N, Gomez JM, Puchal R, Soler J (1999) Blood volumes and renal function in overt and subclinical primary hypothyroidism. Am J Med Sci 318:277–280

    Article  CAS  PubMed  Google Scholar 

  94. den Hollander JG, Wulkan RW, Mantel MJ, Berghout A (2005) Correlation between severity of thyroid dysfunction and renal function. Clin Endocrinol (Oxf) 62:423–427

    Article  Google Scholar 

  95. Suher M, Koc E, Ata N, Ensari C (2005) Relation of thyroid disfunction, thyroid autoantibodies, and renal function. Ren Fail 27:739–742

    Article  CAS  PubMed  Google Scholar 

  96. Holmquist P, Torffvit O, Sjoblad S (2003) Metabolic status in diabetes mellitus affects markers for glomerular filtration rate. Pediatr Nephrol 18:536–540

    Article  PubMed  Google Scholar 

  97. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  98. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39:561–577

    Article  CAS  PubMed  Google Scholar 

  99. Filler G, Priem F, Lepage N, Sinha P, Vollmer I, Clark H, Keely E, Matzinger M, Akbari A, Althaus H, Jung K (2002) Beta-trace protein, cystatin C, beta(2)-microglobulin, and creatinine compared for detecting impaired glomerular filtration rates in children. Clin Chem 48:729–736

    Article  CAS  PubMed  Google Scholar 

  100. Martini S, Prevot A, Mosig D, Werner D, van MG, Guignard JP (2003) Glomerular filtration rate: measure creatinine and height rather than cystatin C! Acta Paediatr 92:1052–1057

    Article  CAS  PubMed  Google Scholar 

  101. Pham-Huy A, Leonard M, Lepage N, Halton J, Filler G (2003) Measuring glomerular filtration rate with cystatin C and beta-trace protein in children with spina bifida. J Urol 169:2312–2315

    Article  CAS  PubMed  Google Scholar 

  102. Ylinen EA, Ala-Houhala M, Harmoinen AP, Knip M (1999) Cystatin C as a marker for glomerular filtration rate in pediatric patients. Pediatr Nephrol 13:506–509

    Article  CAS  PubMed  Google Scholar 

  103. Stickle D, Cole B, Hock K, Hruska KA, Scott MG (1998) Correlation of plasma concentrations of cystatin C and creatinine to inulin clearance in a pediatric population. Clin Chem 44:1334–1338

    Article  CAS  PubMed  Google Scholar 

  104. Willems HL, Hilbrands LB, van de Calseyde JF, Monnens LA, Swinkels DW (2003) Is serum cystatin C the marker of choice to predict glomerular filtration rate in paediatric patients? Ann Clin Biochem 40:60–64

    Article  CAS  PubMed  Google Scholar 

  105. Corrao AM, Lisi G, Di Pasqua G, Guizzardi M, Marino N, Ballone E, Chiesa PL (2006) Serum cystatin C as a reliable marker of changes in glomerular filtration rate in children with urinary tract malformations. J Urol 175:303–309

    Article  CAS  PubMed  Google Scholar 

  106. Filler G, Priem F, Vollmer I, Gellermann J, Jung K (1999) Diagnostic sensitivity of serum cystatin for impaired glomerular filtration rate. Pediatr Nephrol 13:501–505

    Article  CAS  PubMed  Google Scholar 

  107. Samyn M, Cheeseman P, Bevis L, Taylor R, Samaroo B, Buxton-Thomas M, Heaton N, Rela M, Mieli-Vergani G, Dhawan A (2005) Cystatin C, an easy and reliable marker for assessment of renal dysfunction in children with liver disease and after liver transplantation. Liver Transpl 11:344–349

    Article  PubMed  Google Scholar 

  108. Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985

    Article  PubMed  Google Scholar 

  109. Grubb A, Nyman U, Bjork J, Lindstrom V, Rippe B, Sterner G, Christensson A (2005) Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. Clin Chem 51:1420–1431

    Article  CAS  PubMed  Google Scholar 

  110. Bouvet Y, Bouissou F, Coulais Y, Seronie-Vivien S, Tafani M, Decramer S, Chatelut E (2006) GFR is better estimated by considering both serum cystatin C and creatinine levels. Pediatr Nephrol 21:1299–1306

    Article  PubMed  Google Scholar 

  111. Zappitelli M, Parvex P, Joseph L, Paradis G, Grey V, Lau S, Bell L (2006) Derivation and validation of cystatin C-based prediction equations for GFR in children. Am J Kidney Dis 48:221–230

    Article  CAS  PubMed  Google Scholar 

  112. Herrero-Morin JD, Malaga S, Fernandez N, Rey C, Dieguez MA, Solis G, Concha A, Medina A (2007) Cystatin C and beta2-microglobulin: markers of glomerular filtration in critically ill children. Crit Care 11:R59

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Support for this study was provided by Aarhus University Hospital, The John and Birthe Meyer Foundation, The Aase and Ejnar Danielsen Foundation, The Heinrich Kopps Foundation, The Danish National Research Council and The University of Aarhus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trine Borup Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, T.B., Eskild-Jensen, A., Frøkiær, J. et al. Measuring glomerular filtration rate in children; can cystatin C replace established methods? A review. Pediatr Nephrol 24, 929–941 (2009). https://doi.org/10.1007/s00467-008-0991-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-008-0991-y

Keywords

Navigation