Skip to main content

Management of Anemia in Children Receiving Chronic Dialysis

  • Chapter
  • First Online:
Pediatric Dialysis

Abstract

In 1839, the Scottish physician Robert Christison noted that anemia was a common feature of kidney disease, writing that “no other natural disease came as close to hemorrhage for impoverishing the red particles of the blood” [1, 2]. Anemia is a comorbidity affecting nearly all children treated with chronic dialysis, and its management remains challenging for clinicians. The emergence of recombinant human erythropoietin (rHuEPO) more than 30 years ago revolutionized anemia management in the dialysis population and eliminated dependence on red blood cell transfusions for most patients. Increased understanding of the molecular regulation of EPO production and iron metabolism has opened the door for the development of novel erythropoiesis-stimulating agents (ESA) and renal anemia therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fishbane S, Spinowitz B. Update on anemia in ESRD and earlier stages of CKD: core curriculum 2018. Am J Kidney Dis. 2018;71(3):423–35.

    Article  PubMed  Google Scholar 

  2. Christison R. On granular degeneration of the kidneys and its connexions with dropsy inflammations and other diseases. Edinburgh: Black; 1839.

    Google Scholar 

  3. Camaschella C, Pagani A, Nai A, Silvestri L. The mutual control of iron and erythropoiesis. Int J Lab Hematol. 2016;38:20–6.

    Article  PubMed  Google Scholar 

  4. Lankhorst CE, Wish JB. Anemia in renal disease: diagnosis and management. Blood Rev. 2010;24(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  5. Foley RN. Erythropoietin: physiology and molecular mechanisms. Heart Fail Rev. 2008;13(4):405–14.

    Article  CAS  PubMed  Google Scholar 

  6. Koury MJ, Haase VH. Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat Rev Nephrol. 2015;11(7):394–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Donnelly S. Why is erythropoietin made in the kidney? The kidney functions as a critmeter. Am. J. Kidney Dis. 2001;543:73–87.

    Google Scholar 

  8. Atkinson M, Warady B. Anemia in chronic kidney disease. Pediatr. Nephrol. 2018;33(2):227–38.

    Article  PubMed  Google Scholar 

  9. Jelkmann W. Molecular biology of erythropoietin. Intern Med. 2004;43(8):649–59.

    Article  CAS  PubMed  Google Scholar 

  10. West JB. Physiological effects of chronic hypoxia. N Engl J Med. 2017;376:1965–71.

    Article  CAS  PubMed  Google Scholar 

  11. Locatelli F, Fishbane S, Block GA, MacDougall IC. Targeting hypoxia-inducible factors for the treatment of anemia in chronic kidney disease patients. Am J Nephrol. 2017;45(3):187–99.

    Article  CAS  PubMed  Google Scholar 

  12. Kular D, Macdougall IC. HIF stabilizers in the management of renal anemia: from bench to bedside to pediatrics. Pediatr Nephrol. 2019;34(3):365–78.

    Article  PubMed  Google Scholar 

  13. Richmond TD, Chohan M, Barber DL. Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol. 2005;15(3):146–55.

    Article  CAS  PubMed  Google Scholar 

  14. Egrie JC, Browne JK. Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer. 2001;16(Suppl 3):3–13.

    Article  Google Scholar 

  15. Jelkmann W. The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP. Eur J Haematol. 2002;69(5–6):265–74.

    Article  CAS  PubMed  Google Scholar 

  16. Santiago P. Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview. Sci World J. 2012;2012:846824.

    Article  CAS  Google Scholar 

  17. Sangkhae V, Nemeth E. Regulation of the iron homeostatic hormone Hepcidin. Adv Nutr. 2017;8(1):126–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Poli M, Asperti M, Ruzzenenti P, Regoni M, Arosio P. Hepcidin antagonists for potential treatments of disorders with hepcidin excess. Front Pharmacol. 2014;5:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Atkinson MA, White CT. Hepcidin in anemia of chronic kidney disease: review for the pediatric nephrologist. Pediatr Nephrol. 2012;27(1):33–40.

    Article  PubMed  Google Scholar 

  20. Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102(3):783–8.

    Article  CAS  PubMed  Google Scholar 

  21. Atkinson MA, Kim JY, Roy CN, Warady BA, White CT, Furth SL. Hepcidin and risk of anemia in CKD: a cross-sectional and longitudinal analysis in the CKiD cohort. Pediatr Nephrol. 2015;30(4):635–43.

    Article  PubMed  Google Scholar 

  22. Zaritsky J, et al. Hepcidin–a potential novel biomarker for iron status in chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(6):1051–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zaritsky J, et al. Reduction of serum hepcidin by hemodialysis in pediatric and adult patients. Clin J Am Soc Nephrol. 2010;5(6):1010–4.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Atkinson MA, et al. Hemoglobin differences by race in children with CKD. Am J Kidney Dis. Jun. 2010;55(6):1009–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hollowell JG, et al. Hematological and iron-related analytes–reference data for persons aged 1 year and over: United States, 1988–94. Vital Health Stat. 2005;11(247):1–156.

    Google Scholar 

  26. Jackson RT. Separate hemoglobin standards for blacks and whites: a critical review of the case for separate and unequal hemoglobin standards. Med Hypotheses. 1990;32(3):181–9.

    Article  CAS  PubMed  Google Scholar 

  27. Filler G, Mylrea K, Feber J, Wong H. How to define anemia in children with chronic kidney disease? Pediatr Nephrol. 2007;2(5):702–7.

    Article  Google Scholar 

  28. KDIGO Anemia Workgroup. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int Suppl. 2012;2:279–335.

    Google Scholar 

  29. Mikhail A, et al. Renal association clinical practice guideline on anaemia of chronic kidney disease. BMC Nephrol. 2017;18(1):345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fadrowski JJ, Pierce CB, Cole SR, Moxey-Mims M, Warady BA, Furth SL. Hemoglobin decline in children with chronic kidney disease: baseline results from the chronic kidney disease in children prospective cohort study. Clin J Am Soc Nephrol. 2008;3(2):457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Atkinson MA, Martz K, Warady BA, Neu AM. Risk for anemia in pediatric chronic kidney disease patients: a report of NAPRTCS. Pediatr Nephrol. 2010;25(9):1699–706.

    Article  PubMed  Google Scholar 

  32. Staples AO, et al. Anemia and risk of hospitalization in pediatric chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(1):48–56.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Borzych-Duzalka D, et al. Management of anemia in children receiving chronic peritoneal dialysis. J Am Soc Nephrol. 2013;24(4):665–76.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Robins EB, Blum S. Hematologic reference values for African American children and adolescents. Am J Hematol. 2007;82(7):611–4.

    Article  CAS  PubMed  Google Scholar 

  35. Atkinson MA, et al. Genetic associations of hemoglobin in children with chronic kidney disease in the PediGFR Consortium. Pediatr Res. 2019;85(3):324–8.

    Article  CAS  PubMed  Google Scholar 

  36. Warady BA, Ho M. Morbidity and mortality in children with anemia at initiation of dialysis. Pediatr Nephrol. 2003;18(10):1055–62.

    Article  PubMed  Google Scholar 

  37. Amaral S, Hwang W, Fivush B, Neu A, Frankenfield D, Furth S. Association of mortality and hospitalization with achievement of adult hemoglobin targets in adolescents maintained on hemodialysis. J Am Soc Nephrol. 2006;17(10):2878–85.

    Article  PubMed  Google Scholar 

  38. Dahlinghaus EK, Neu AM, Atkinson MA, Fadrowski JJ. Hemoglobin level and risk of hospitalization and mortality in children on peritoneal dialysis. Pediatr Nephrol. 2014;29(12):2387–94.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Adamczuk D, Roszkowska-Blaim M. Long-term outcomes in children with chronic kidney disease stage 5 over the last 40 years. Arch Med Sci. 2017;3(3):635–44.

    Article  Google Scholar 

  40. Rheault MN, Molony JT, Nevins T, Herzog CA, Chavers BM. Hemoglobin of 12 g/dl and above is not associated with increased cardiovascular morbidity in children on hemodialysis. Kidney Int. 2017;91(1):177–82.

    Article  CAS  PubMed  Google Scholar 

  41. Beusterien KM, Nissenson AR, Port FK, Kelly M, Steinwald B, Ware JE. The effects of recombinant human erythropoietin on functional health and well-being in chronic dialysis patients. J Am Soc Nephrol. 1996;7(5):763–73.

    Article  CAS  PubMed  Google Scholar 

  42. Moreno F, Aracil FJ, Perez R, Valderrabano F. Controlled study on the improvement of quality of life in elderly hemodialysis patients after correcting end-stage renal disease-related anemia with erythropoietin. Am J Kidney Dis. 1996;27(4):548–56.

    Article  CAS  PubMed  Google Scholar 

  43. Bárány P, Freyschuss U, Pettersson E, Bergström J. Treatment of anaemia in haemodialysis patients with erythropoietin: long-term effects on exercise capacity. Clin Sci (Lond). 1993;84(4):441–7.

    Article  Google Scholar 

  44. Morris KP, Sharp J, Watson S, Coulthard MG. Non-cardiac benefits of human recombinant erythropoietin in end stage renal failure and anaemia. Arch Dis Child. 1993;69(5):580–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Damme-Lombaerts R, Broyer M, Businger J, Baldauf C, Stocker H. A study of recombinant human erythropoietin in the treatment of anaemia of chronic renal failure in children on haemodialysis. Pediatr Nephrol. 1994;8(3):338–42.

    Article  PubMed  Google Scholar 

  46. Gerson A, et al. Anemia and health-related quality of life in adolescents with chronic kidney disease. Am J Kidney Dis. 2004;44(6):1017–23.

    Article  PubMed  Google Scholar 

  47. Warady BA, Sabath RJ, Smith CA, Alon U, Hellerstein S. Recombinant human erythropoietin therapy in pediatric patients receiving long-term peritoneal dialysis. Pediatr Nephrol. 1991;5(6):718–23.

    Article  CAS  PubMed  Google Scholar 

  48. Burke JR. Low-dose subcutaneous recombinant erythropoietin in children with chronic renal failure. Australian and New Zealand Paediatric Nephrology Association. Pediatr Nephrol. 1995;9(5):558–61.

    Article  CAS  PubMed  Google Scholar 

  49. Singh AK, et al. Correction of Anemia with Epoetin Alfa in chronic kidney disease. N Engl J Med. 2006;355(20):2085–98.

    Article  CAS  PubMed  Google Scholar 

  50. Pickett JL, Theberge DC, Brown WS, Schweitzer SU, Nissenson AR. Normalizing hematocrit in dialysis patients improves brain function. Am J Kidney Dis. 1999;33(6):1122–30.

    Article  CAS  PubMed  Google Scholar 

  51. Marsh JT, et al. rHuEPO treatment improves brain and cognitive function of anemic dialysis patients. Kidney Int. 1991;39(1):155–63.

    Article  CAS  PubMed  Google Scholar 

  52. Grimm G, Stockenhuber F, Schneeweiss B, Madl C, Zeitlhofer J, Schneider B. Improvement of brain function in hemodialysis patients treated with erythropoietin. Kidney Int. 1990;38(3):480–6.

    Article  CAS  PubMed  Google Scholar 

  53. Sagalés T, Gimeno V, Planella MJ, Raguer N, Bartolome J. Effects of rHuEPO on Q-EEG and event-related potentials in chronic renal failure. Kidney Int. 1993;44(5):1109–15.

    Article  PubMed  Google Scholar 

  54. Metry G, et al. Effect of normalization of hematocrit on brain circulation and metabolism in hemodialysis patients. J Am Soc Nephrol. 1999;10(4):854–63.

    Article  CAS  PubMed  Google Scholar 

  55. Levin A, et al. Left ventricular mass index increase in early renal disease: impact of decline in hemoglobin. Am J Kidney Dis. 1999;34(1):125–34.

    Article  CAS  PubMed  Google Scholar 

  56. Levin A, et al. Canadian randomized trial of hemoglobin maintenance to prevent or delay left ventricular mass growth in patients with CKD. Am J Kidney Dis. 2005;46(5):799–811.

    Article  CAS  PubMed  Google Scholar 

  57. Chavers BM, Li S, Collins AJ, Herzog CA. Cardiovascular disease in pediatric chronic dialysis patients. Kidney Int. 2002;62(2):648–53.

    Article  PubMed  Google Scholar 

  58. Matteucci MC, et al. Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J Am Soc Nephrol. 2005;17(1):218–26.

    Article  PubMed  Google Scholar 

  59. El-Husseini AA, Sheashaa HA, Hassan NA, El-Demerdash FM, Sobh MA, Ghoneim MA. Echocardiographic changes and risk factors for left ventricular hypertrophy in children and adolescents after renal transplantation. Pediatr Transplant. 2004;8(3):249–54.

    Article  PubMed  Google Scholar 

  60. Morris KP, Skinner JR, Hunter S, Coulthard MG. Short term correction of anaemia with recombinant human erythropoietin and reduction of cardiac output in end stage renal failure. Arch Dis Child. 1993;68(5):644–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mitsnefes MM, Daniels SR, Schwartz SM, Meyer RA, Khoury P, Strife CF. Severe left ventricular hypertrophy in pediatric dialysis: prevalence and predictors. Pediatr Nephrol. 2000;14(10–11):898–902.

    Article  CAS  PubMed  Google Scholar 

  62. Mitsnefes MM, et al. Impaired left ventricular diastolic function in children with chronic renal failure. Kidney Int. 2004;65(4):1461–6.

    Article  PubMed  Google Scholar 

  63. Kupferman JC, et al. BP control and left ventricular hypertrophy regression in children with CKD. J Am Soc Nephrol. 2014;25(1):167–74.

    Article  PubMed  Google Scholar 

  64. Yorgin P, Zaritsky JJ. Management of renal anemia in children with chronic kidney disease in pediatric dialysis. 2nd ed. New York: Springer; 2012.

    Google Scholar 

  65. Foulks CJ, Mills GM, Wright LF. Parathyroid hormone and anaemia – an erythrocyte osmotic fragility study in primary and secondary hyperparathyroidism. Postgrad Med J. 1989;65(761):136–9.

    Google Scholar 

  66. Atkinson MA, Furth SL. Anemia in children with chronic kidney disease. Nat Rev Nephrol. Nov. 2011;7(11):635–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bamgbola OF, Kaskel F. Role of folate deficiency on erythropoietin resistance in pediatric and adolescent patients on chronic dialysis. Pediatr Nephrol. 2005;20(11):1622–9.

    Article  PubMed  Google Scholar 

  68. Calò LA, Vertolli U, Davis PA, Savica V. L carnitine in hemodialysis patients. Hemodial Int. 2012;16(3):428–34.

    Article  PubMed  Google Scholar 

  69. Raimann JG, Levin NW, Craig RG, Sirover W, Kotanko P, Handelman G. Is vitamin C intake too low in Dialysis patients? Semin Dial. 2013;26(1):1–5.

    Article  PubMed  Google Scholar 

  70. Nasr SH, Kashtanova Y, Levchuk V, Markowitz GS. Secondary oxalosis due to excess vitamin C intake. Kidney Int. 2006;70(10):1672.

    Article  CAS  PubMed  Google Scholar 

  71. Lazarchick J. Update on anemia and neutropenia in copper deficiency. Curr Opin Hematol. 2012;19(1):58–60.

    Article  CAS  PubMed  Google Scholar 

  72. Nangaku M, Eckardt KU. Pathogenesis of renal anemia. Semin Nephrol. 2006;26(4):261–8.

    Article  CAS  PubMed  Google Scholar 

  73. Geerlings W, et al. Factors influencing anaemia in dialysis patients. A special survey by the edta-era registry. Nephrol Dial Transplant. 1993;8(7):585.

    CAS  PubMed  Google Scholar 

  74. Djuric P, Dimkovic N, Djuric Z, Popovic J, Tosic J, Jankovic A. Influence of hemodialysis duration per week on parameters of dialysis adequacy and cardiovascular morbidity. Med Pregl Rev. 2014;10(6):388–95.

    Google Scholar 

  75. Goodnough LT, Nemeth E, Ganz T. Detection, evaluation, and management of iron-restricted erythropoiesis. Blood. 2010;116(23):4754–61.

    Article  CAS  PubMed  Google Scholar 

  76. Babitt JL, Lin HY. Mechanisms of anemia in CKD. J Am Soc Nephrol. 2012;23(10):1631–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Atkinson MA, et al. Association between common iron store markers and hemoglobin in children with chronic kidney disease. Pediatr Nephrol. 2012;27(12):2275–83.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Davidkova S, Prestidge TD, Reed PW, Kara T, Wong W, Prestidge C. Comparison of reticulocyte hemoglobin equivalent with traditional markers of iron and erythropoiesis in pediatric dialysis. Pediatr Nephrol. 2016;31(5):819–26.

    Article  PubMed  Google Scholar 

  79. Ratcliffe LEK, et al. Diagnosis and management of iron deficiency in CKD: a summary of the NICE guideline recommendations and their rationale. Am J Kidney Dis. 2016;67(4):548–58.

    Article  PubMed  Google Scholar 

  80. Urrechaga E, Borque L, Escanero JF. Biomarkers of hypochromia: The contemporary assessment of iron status and erythropoiesis. BioMed Res Int. 2013;2013:603786.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. KDOQI. KDOQI clinical practice guideline and clinical practice recommendations for anemia in chronic kidney disease: 2007 update of hemoglobin target. Am J Kidney Dis. 2007;50(3):471–530.

    Article  Google Scholar 

  82. “Chronic kidney disease: managing anaemia | Guidance and guidelines | NICE.”

    Google Scholar 

  83. Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med. 1987;316(2):73–8.

    Article  CAS  PubMed  Google Scholar 

  84. Elliott S, Pham E, Macdougall IC. Erythropoietins: a common mechanism of action. Exp Hematol. 2008;36(12):1573–84.

    Article  CAS  PubMed  Google Scholar 

  85. Elliott S, et al. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol. 2003;21(4):414.

    Article  CAS  PubMed  Google Scholar 

  86. Wish JB, et al. Introduction of biosimilar therapeutics into nephrology practice in the United States: report of a scientific workshop sponsored by the National Kidney Foundation. Am J Kidney Dis. 2016;68(6):843–52.

    Article  PubMed  Google Scholar 

  87. Hörl WH. Differentiating factors between erythropoiesis-stimulating agents: an update to selection for anaemia of chronic kidney disease. Drugs. 2013;73(2):117–30.

    Article  PubMed  CAS  Google Scholar 

  88. Warady BA, Arar MY, Lerner G, Nakanishi AM, Stehman-Breen C. Darbepoetin alfa for the treatment of anemia in pediatric patients with chronic kidney disease. Pediatr Nephrol. 2006;21(8):1144–52.

    Article  PubMed  Google Scholar 

  89. Schaefer F, et al. Safety and usage of darbepoetin alfa in children with chronic kidney disease: prospective registry study. Pediatr Nephrol. Mar. 2016;31(3):443–53.

    Article  PubMed  Google Scholar 

  90. Schmitt CP, Nau B, Brummer C, Rosenkranz J, Schaefer F. Increased injection pain with darbepoetin-α compared to epoetin-β in paediatric dialysis patients. Nephrol Dial Transplant. 2006;21(12):3520–4.

    Article  CAS  PubMed  Google Scholar 

  91. Macdougall IC, Eckardt KU. Novel strategies for stimulating erythropoiesis and potential new treatments for anaemia. Lancet. 2006;368(9539):947–53.

    Article  CAS  PubMed  Google Scholar 

  92. Jelkmann W. Recombinant EPO production – points the nephrologist should know. Nephrol Dial Transplant. 2007;22(10):2749–53.

    Google Scholar 

  93. Cano F, et al. Continuous EPO receptor activator therapy of anemia in children under peritoneal dialysis. Pediatr Nephrol. 2011;24(4):665–76.

    Google Scholar 

  94. Fischbach M, Wühl E, Reigner SCM, Morgan Z, Schaefer F. Efficacy and long-term safety of C.E.R.A. maintenance in Pediatric Hemodialysis patients with Anemia of CKD. Clin J Am Soc Nephrol. 2018;13(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  95. Fishbane S, Berns JS. Hemoglobin cycling in hemodialysis patients treated with recombinant human erythropoietin. Kidney Int. 2005;68(3):1337–43.

    Article  CAS  PubMed  Google Scholar 

  96. Koshy SM, Geary DF. Anemia in children with chronic kidney disease. Pediatr Nephrol. 2008;23(2):209–19.

    Article  PubMed  Google Scholar 

  97. Port RE, Kiepe D, Van Guilder M, Jelliffe RW, Mehls O. Recombinant human erythropoietin for the treatment of renal anaemia in children – no justification for bodyweight-adjusted dosage. Clin Pharmacokinet. 2004;46(5):461–6.

    Google Scholar 

  98. Bamgbola OF, Kaskel FJ, Coco M. Analyses of age, gender and other risk factors of erythropoietin resistance in pediatric and adult dialysis cohorts. Pediatr Nephrol. 2009;24(3):571–9.

    Article  PubMed  Google Scholar 

  99. Port RE, Mehls O. Erythropoietin dosing in children with chronic kidney disease: based on body size or on hemoglobin deficit? Pediatr Nephrol. 2009;24(3):435–7.

    Article  PubMed  Google Scholar 

  100. McGowan T, Vaccaro NM, Beaver JS, Massarella J, Wolfson M. Pharmacokinetic and pharmacodynamic profiles of extended dosing of epoetin alfa in anemic patients who have chronic kidney disease and are not on dialysis. Clin J Am Soc Nephrol. 2008;4(11):1731–40.

    Google Scholar 

  101. Pergola PE, Gartenberg G, Fu M, Sun S, Wolfson M, Bowers P. A randomized controlled study comparing once-weekly to every-2-week and every-4-week dosing of epoetin alfa in CKD patients with anemia. Clin J Am Soc Nephrol. 2010;5(4):598–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pfeffer MA, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009;361(21):2019–32.

    Article  PubMed  Google Scholar 

  103. Kliger AS, et al. KDOQI US Commentary on the 2012 KDIGO Clinical Practice Guideline for Anemia in CKD. Am J Kidney Dis. 2013;62(5):849–59.

    Article  PubMed  Google Scholar 

  104. Lestz RM, Fivush BA, Atkinson MA. Association of higher erythropoiesis stimulating agent dose and mortality in children on dialysis. Pediatr Nephrol. 2014;29(10):2021–8.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Badve SV, Hawley CM, Johnson DW. Is the problem with the vehicle or the destination? Does high-dose ESA or high haemoglobin contribute to poor outcomes in CKD? Nephrology. 2011;16(2):144–53.

    Article  PubMed  Google Scholar 

  106. Goodkin DA, et al. Naturally occurring higher hemoglobin concentration does not increase mortality among hemodialysis patients. J Am Soc Nephrol. 2011;22(2):358–65.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Unger EF, Thompson AM, Blank MJ, Temple R. Erythropoiesis-stimulating agents–time for a reevaluation. N Engl J Med. 2010;362(3):189–92.

    Article  CAS  PubMed  Google Scholar 

  108. Besarab A, et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med. 2002;339(9):584–90.

    Article  Google Scholar 

  109. Brigandi RA, et al. A novel hypoxia-inducible factor−prolyl hydroxylase inhibitor (GSK1278863) for anemia in CKD: a 28-day, phase 2A randomized trial. Am J Kidney Dis. 2016;67(6):861–71.

    Article  CAS  PubMed  Google Scholar 

  110. Besarab A, et al. Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol Dial Transplant. 2015;30(10):1665–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schmid H, Jelkmann W. Investigational therapies for renal disease-induced anemia. Expert Opin Investig Drugs. 2016;25(8):901–16.

    Article  CAS  PubMed  Google Scholar 

  112. Cooke KS, et al. A fully human anti-hepcidin antibody modulates iron metabolism in both mice and nonhuman primates. Blood. 2013;122(17):3054–61.

    Article  CAS  PubMed  Google Scholar 

  113. Gilbertson DT, Peng Y, Arneson TJ, Dunning S, Collins AJ. Comparison of methodologies to define hemodialysis patients hyporesponsive to epoetin and impact on counts and characteristics. BMC Nephrol. 2013;14:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chutia H, Ruram A, Bhattacharyya H, Boruah P, Nath C. Association of secondary hyperparathyroidism with hemoglobin level in patients with chronic kidney disease. J Lab Physicians. 2013;5(1):51–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rao DS, Shih M, Mohini R. Effect of serum parathyroid hormone and bone marrow fibrosis on the response to erythropoietin in Uremia. N Engl J Med. 2002;328(3):171–5.

    Article  Google Scholar 

  116. Fulton B, Jeffery EH. Heme oxygenase induction. Biol Trace Elem Res. 2008;81(6):1661–5.

    Google Scholar 

  117. Losekann A, et al. Aluminium intoxication in the rat induces partial resistance to the effect of recombinant human erythropoietin. Nephrol Dial Transplant. 1990;5(4):258–63.

    Article  CAS  PubMed  Google Scholar 

  118. Pollack AH, Oron AP, Flynn JT, Munshi R. Using dynamic treatment regimes to understand erythropoietin-stimulating agent hyporesponsiveness. Pediatr Nephrol. 2018;33(8):1411–7.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bennett CL, et al. Linking drugs to obscure illnesses: lessons from pure red cell aplasia, nephrogenic systemic fibrosis, and Reye’s syndrome. a report from the Southern Network on Adverse Reactions (SONAR). J Gen Intern Med. 2012;27(12):1697–703.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yabu JM, et al. Sensitization from transfusion in patients awaiting primary kidney transplant. Nephrol Dial Transplant. 2013;28(11):2908–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Obrador GT, Macdougall IC. Effect of red cell transfusions on future kidney transplantation. CJASN. 2013;8(5):852–60.

    Article  PubMed  Google Scholar 

  122. Kalantar-Zadeh K, Kalantar-Zadeh K, Lee GH. The fascinating but deceptive ferritin: to measure it or not to measure it in chronic kidney disease? CJASN. 2006;1(Suppl 1):S9–18.

    Article  CAS  PubMed  Google Scholar 

  123. Charytan DM, et al. Considerations and challenges in defining optimal iron utilization in hemodialysis. J Am Soc Nephrol. 2015;26(6):1238–47.

    Article  CAS  PubMed  Google Scholar 

  124. Anirban G, Kohli HS, Jha V, Gupta KL, Sakhuja V. The comparative safety of various intravenous iron preparations in chronic kidney disease patients. Ren Fail. 2008;30(6):629–38.

    Article  CAS  PubMed  Google Scholar 

  125. Pai AB. Iron oxide nanoparticle formulations for supplementation. Met Ions Life Sci. 2019;19 https://doi.org/10.1515/9783110527872-012.

  126. Pai AB, et al. In vitro and in vivo DFO-chelatable labile iron release profiles among commercially available intravenous iron nanoparticle formulations. Regul Toxicol. Pharmacol. 2018;97:17–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gillespie RS, Wolf FM. Intravenous iron therapy in pediatric hemodialysis patients: a meta-analysis. Pediatr Nephrol. 2004;19(6):662–6.

    Article  PubMed  Google Scholar 

  128. Warady BA, et al. Iron therapy in the pediatric hemodialysis population. Pediatr Nephrol. 2004;19(6):655–61.

    Article  PubMed  Google Scholar 

  129. Warady BA, et al. Sodium ferric gluconate complex maintenance therapy in children on hemodialysis. Pediatr Nephrol. 2006;21(4):553–60.

    Article  PubMed  Google Scholar 

  130. Warady BA, et al. Sodium ferric gluconate complex therapy in anemic children on hemodialysis. Pediatr Nephrol. 2005;20(9):1320–7.

    Article  PubMed  Google Scholar 

  131. Warady BA, Seligman PA, Dahl NV. Single-dosage pharmacokinetics of sodium ferric gluconate complex in iron-deficient pediatric hemodialysis patients. Clin J Am Soc Nephrol. 2007;2(6):1140–6.

    Article  CAS  PubMed  Google Scholar 

  132. Coyne DW, Kapoian T, Suki W, Singh AK, Moran JE, Dahl NV, Rizkala AR. Ferric gluconate is highly efficacious in anemic hemodialysis patients with high serum ferritin and low transferrin saturation: results of the Dialysis Patients’ Response to IV Iron with Elevated Ferritin (DRIVE) Study. J Am Soc Nephrol. 2007;18(3):975–84.

    Article  CAS  PubMed  Google Scholar 

  133. Ishida JH, et al. Receipt of intravenous iron and clinical outcomes among hemodialysis patients hospitalized for infection. Clin J Am Soc Nephrol. 2015;10(10):1799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Goldstein SL, Morris D, Warady BA. Comparison of the safety and efficacy of 3 iron sucrose iron maintenance regimens in children, adolescents, and young adults with CKD: a randomized controlled trial. Am J Kidney Dis. 2013;61(4):588–97.

    Article  CAS  PubMed  Google Scholar 

  135. Liakopoulos V, Roumeliotis S, Zarogiannis S, Eleftheriadis T, Mertens PR. Oxidative stress in hemodialysis: causative mechanisms, clinical implications, and possible therapeutic interventions. Semin Dial. 2019;32(1):58–71.

    Article  PubMed  Google Scholar 

  136. Kato A, Odamaki M, Takita T, Furuhashi M, Maruyama Y, Hishida A. C-reactive protein is a predictor of short-term mortality in hemodialysis patients. Am J Nephrol. 2001;21(2):176–8.

    Article  CAS  PubMed  Google Scholar 

  137. Goldstein SL, Currier H, Watters L, Hempe JM, Sheth RD, Silverstein D. Acute and chronic inflammation in Pediatric patients receiving hemodialysis. J Pediatr. 2003;143(5):653–7.

    Article  CAS  PubMed  Google Scholar 

  138. Weiss G, Meusburger E, Radacher G, Garimorth K, Neyer U, Mayer G. Effect of iron treatment on circulating cytokine levels in ESRD patients receiving recombinant human erythropoietin. Kidney Int. 2003;64(2):572–8.

    Article  CAS  PubMed  Google Scholar 

  139. C. for D. E. and Research, “Approval Package for Application Number 208551Orig1s000,” 2016 [Online]. Available: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/208551Orig1s000Approv.pdf

  140. Rooyakkers TM, et al. Ferric saccharate induces oxygen radical stress and endothelial dysfunction in vivo. Eur J Clin Invest. 2003;32(Suppl 1):9–16.

    Google Scholar 

  141. Pratt RD, Grimberg S, Zaritsky JJ, Warady BA. Pharmacokinetics of ferric pyrophosphate citrate administered via dialysate and intravenously to pediatric patients on chronic hemodialysis. Pediatr Nephrol. 2018;33(11):2151–9.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Yagil Y, et al. Managing hyperphosphatemia in patients with chronic kidney disease on dialysis with ferric citrate: latest evidence and clinical usefulness. Ther Adv Chronic Dis. 2015;6(5):252–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meredith A. Atkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Atkinson, M.A., Warady, B.A. (2021). Management of Anemia in Children Receiving Chronic Dialysis. In: Warady, B.A., Alexander, S.R., Schaefer, F. (eds) Pediatric Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-030-66861-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66861-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66860-0

  • Online ISBN: 978-3-030-66861-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics