Skip to main content

The Cardiovascular Status of Pediatric Dialysis Patients

  • Chapter
  • First Online:
Pediatric Dialysis

Abstract

Since the inception of pediatric dialysis programs more than 50 years ago, there have been vast improvements in both the technology and expertise in the care of children with chronic kidney disease (CKD). Nevertheless, children on dialysis continue to have an unacceptably high mortality, and cardiovascular disease (CVD) is a life-limiting comorbidity in patients with CKD. Although cardiac and vascular damage likely begins early in the course of CKD, dialysis aggravates preexisting risk factors and accelerates the progression of CVD with additional dialysis-related risk factors. Coronary artery calcifications in children and young adults with CKD accumulate in a time-dependent manner on dialysis. Risk factors for CVD, which include hypertension and dysregulated mineral metabolism leading to ectopic vascular calcification, have been consistently implicated in clinical, epidemiological, and cell biology studies as key, but importantly modifiable, risk factors in the development of CVD. Identifying potentially modifiable damage-inducing agents in the uremic milieu and understanding their role in the pathophysiology of CVD may allow us to inhibit progression or even induce regression of existing cardiac and vascular injury in CKD patients.

In this chapter, we discuss the epidemiology, risk factors, clinical and cell biology studies investigating the pathophysiology of CVD and ectopic vascular calcification in CKD, and explore the investigational modalities and treatment options available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32(5 Suppl 3):S112–9.

    Article  CAS  PubMed  Google Scholar 

  2. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation. 2002;106(1):100–5.

    Article  PubMed  Google Scholar 

  3. Gruppen MP, Groothoff JW, Prins M, van der Wouw P, Offringa M, Bos WJ, et al. Cardiac disease in young adult patients with end-stage renal disease since childhood: a Dutch cohort study. Kidney Int. 2003;63(3):1058–65.

    Article  PubMed  Google Scholar 

  4. Parekh RS, Carroll CE, Wolfe RA, Port FK. Cardiovascular mortality in children and young adults with end-stage kidney disease. J Pediatr. 2002;141(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  5. McDonald SP, Craig JC. Long-term survival of children with end-stage renal disease. N Engl J Med. 2004;350(26):2654–62.

    Article  CAS  PubMed  Google Scholar 

  6. Chavers BM, Li S, Collins AJ, Herzog CA. Cardiovascular disease in pediatric chronic dialysis patients. Kidney Int. 2002;62(2):648–53.

    Article  PubMed  Google Scholar 

  7. Mitsnefes MM, Laskin BL, Dahhou M, Zhang X, Foster BJ. Mortality risk among children initially treated with dialysis for end-stage kidney disease, 1990-2010. JAMA. 2013;309(18):1921–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. US Renal Data System: USRDS 2018 Annual Data Report: Mortality and causes of death.

    Google Scholar 

  9. Mitsnefes MM. Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol. 2012;23(4):578–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Levey AS, Beto JA, Coronado BE, Eknoyan G, Foley RN, Kasiske BL, et al. Controlling the epidemic of cardiovascular disease in chronic renal disease: what do we know? What do we need to learn? Where do we go from here? National Kidney Foundation Task Force on Cardiovascular Disease. Am J Kidney Dis. 1998;32(5):853–906.

    Article  CAS  PubMed  Google Scholar 

  11. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.

    Article  CAS  PubMed  Google Scholar 

  12. McGill HC Jr, McMahan CA, Zieske AW, Tracy RE, Malcom GT, Herderick EE, et al. Association of Coronary Heart Disease Risk Factors with microscopic qualities of coronary atherosclerosis in youth. Circulation. 2000;102(4):374–9.

    Article  PubMed  Google Scholar 

  13. Berenson GS, Srinivasan SR, Bao W, Newman WP 3rd, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998;338(23):1650–6.

    Article  CAS  PubMed  Google Scholar 

  14. Group. JAMA. 1990;264:3018–24. PRGRoaiymtslccasAprftPDoAiYPR.

    Google Scholar 

  15. Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman WP 3rd, Herderick EE, et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA. 1999;281(8):727–35.

    Article  CAS  PubMed  Google Scholar 

  16. Kavey RE, Allada V, Daniels SR, Hayman LL, McCrindle BW, Newburger JW, et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: endorsed by the American Academy of Pediatrics. Circulation. 2006;114(24):2710–38.

    Google Scholar 

  17. Schaefer F, Doyon A, Azukaitis K, Bayazit A, Canpolat N, Duzova A, et al. Cardiovascular phenotypes in children with CKD: the 4C study. Clin J Am Soc Nephrol. 2017;12(1):19–28.

    Article  PubMed  Google Scholar 

  18. Wong CJ, Moxey-Mims M, Jerry-Fluker J, Warady BA, Furth SL. CKiD (CKD in children) prospective cohort study: a review of current findings. Am J Kidney Dis. 2012;60(6):1002–11.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lingens N, Dobos E, Witte K, Busch C, Lemmer B, Klaus G, et al. Twenty-four-hour ambulatory blood pressure profiles in pediatric patients after renal transplantation. Pediatr Nephrol. 1997;11(1):23–6.

    Article  CAS  PubMed  Google Scholar 

  20. Seeman T, Simkova E, Kreisinger J, Vondrak K, Dusek J, Gilik J, et al. Control of hypertension in children after renal transplantation. Pediatr Transplant. 2006;10(3):316–22.

    Article  CAS  PubMed  Google Scholar 

  21. Mitsnefes M, Stablein D. Hypertension in pediatric patients on long-term dialysis: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Am J Kidney Dis. 2005;45(2):309–15.

    Article  PubMed  Google Scholar 

  22. Tkaczyk M, Nowicki M, Balasz-Chmielewska I, Boguszewska-Baczkowska H, Drozdz D, Kollataj B, et al. Hypertension in dialysed children: the prevalence and therapeutic approach in Poland--a nationwide survey. Nephrol Dial Transplant. 2006;21(3):736–42.

    Article  PubMed  Google Scholar 

  23. Mitsnefes MM, Kimball TR, Witt SA, Glascock BJ, Khoury PR, Daniels SR. Left ventricular mass and systolic performance in pediatric patients with chronic renal failure. Circulation. 2003;107(6):864–8.

    Article  PubMed  Google Scholar 

  24. Mitsnefes MM, Daniels SR, Schwartz SM, Meyer RA, Khoury P, Strife CF. Severe left ventricular hypertrophy in pediatric dialysis: prevalence and predictors. Pediatr Nephrol. 2000;14(10–11):898–902.

    Article  CAS  PubMed  Google Scholar 

  25. Litwin M, Wuhl E, Jourdan C, Trelewicz J, Niemirska A, Fahr K, et al. Altered morphologic properties of large arteries in children with chronic renal failure and after renal transplantation. J Am Soc Nephrol. 2005;16(5):1494–500.

    Article  PubMed  Google Scholar 

  26. Wroblewski K, Hincz K, Miklaszewska M, Zachwieja K, Wiercinski R, Stankiewicz R, et al. Antihypertensive treatment prescription in pediatric dialysis patients in Poland: a comparison between two nationwide studies 2003/2004-2013. Adv Clin Exp Med. 2017;26(8):1263–8.

    Article  PubMed  Google Scholar 

  27. van Stralen KJ, Borzych-Duzalka D, Hataya H, Kennedy SE, Jager KJ, Verrina E, et al. Survival and clinical outcomes of children starting renal replacement therapy in the neonatal period. Kidney Int. 2014;86(1):168–74.

    Article  PubMed  Google Scholar 

  28. Chaudhuri A, Sutherland SM, Begin B, Salsbery K, McCabe L, Potter D, et al. Role of twenty-four-hour ambulatory blood pressure monitoring in children on dialysis. Clin J Am Soc Nephrol. 2011;6(4):870–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. VanDeVoorde RG, Barletta GM, Chand DH, Dresner IG, Lane J, Leiser J, et al. Blood pressure control in pediatric hemodialysis: the Midwest Pediatric Nephrology Consortium Study. Pediatr Nephrol. 2007;22(4):547–53.

    Article  PubMed  Google Scholar 

  30. Fischbach M, Terzic J, Menouer S, Dheu C, Seuge L, Zalosczic A. Daily on line haemodiafiltration promotes catch-up growth in children on chronic dialysis. Nephrol Dial Transplant. 2010;25(3):867–73.

    Article  CAS  PubMed  Google Scholar 

  31. Mitsnefes MM, Barletta GM, Dresner IG, Chand DH, Geary D, Lin JJ, et al. Severe cardiac hypertrophy and long-term dialysis: the Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol. 2006;21(8):1167–70.

    Article  PubMed  Google Scholar 

  32. Ulinski T, Genty J, Viau C, Tillous-Borde I, Deschenes G. Reduction of left ventricular hypertrophy in children undergoing hemodialysis. Pediatr Nephrol. 2006;21(8):1171–8.

    Article  PubMed  Google Scholar 

  33. Lee JH, Park YS. The B-type natriuretic peptide is a useful biomarker for the estimation of volume overload in children with hypertension in children on peritoneal dialysis. Nephrology (Carlton). 2018;24:341.

    Article  CAS  Google Scholar 

  34. Muntner P, Coresh J, Smith JC, Eckfeldt J, Klag MJ. Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study. Kidney Int. 2000;58(1):293–301.

    Article  CAS  PubMed  Google Scholar 

  35. Saland JM, Pierce CB, Mitsnefes MM, Flynn JT, Goebel J, Kupferman JC, et al. Dyslipidemia in children with chronic kidney disease. Kidney Int. 2010;78(11):1154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheng SC, Chu TS, Huang KY, Chen YM, Chang WK, Tsai TJ, et al. Association of hypertriglyceridemia and insulin resistance in uremic patients undergoing CAPD. Perit Dial Int: journal of the International Society for Peritoneal Dialysis. 2001;21(3):282–9.

    Article  CAS  Google Scholar 

  37. Mak RH. 1,25-Dihydroxyvitamin D3 corrects insulin and lipid abnormalities in uremia. Kidney Int. 1998;53(5):1353–7.

    Article  CAS  PubMed  Google Scholar 

  38. Mak RH. Effect of metabolic acidosis on hyperlipidemia in uremia. Pediatr Nephrol. 1999;13(9):891–3.

    Article  CAS  PubMed  Google Scholar 

  39. Chan PC, Persaud J, Varghese Z, Kingstone D, Baillod RA, Moorhead JF. Apolipoprotein B turnover in dialysis patients: its relationship to pathogenesis of hyperlipidemia. Clin Nephrol. 1989;31(2):88–95.

    CAS  PubMed  Google Scholar 

  40. Horkko S, Huttunen K, Kesaniemi YA. Decreased clearance of low-density lipoprotein in uremic patients under dialysis treatment. Kidney Int. 1995;47(6):1732–40.

    Article  CAS  PubMed  Google Scholar 

  41. Saland JM, Ginsberg H, Fisher EA. Dyslipidemia in pediatric renal disease: epidemiology, pathophysiology, and management. Curr Opin Pediatr. 2002;14(2):197–204.

    Article  PubMed  Google Scholar 

  42. Wang X, Axelsson J, Nordfors L, Qureshi AR, Avesani C, Barany P, et al. Changes in fat mass after initiation of maintenance dialysis is influenced by the uncoupling protein 2 exon 8 insertion/deletion polymorphism. Nephrol Dial Transplant. 2007;22(1):196–202.

    Article  CAS  PubMed  Google Scholar 

  43. Kalantar-Zadeh K, Kopple JD. Relative contributions of nutrition and inflammation to clinical outcome in dialysis patients. Am J Kidney Dis. 2001;38(6):1343–50.

    Article  CAS  PubMed  Google Scholar 

  44. Kalantar-Zadeh K, Block G, Humphreys MH, Kopple JD. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003;63(3):793–808.

    Article  PubMed  Google Scholar 

  45. Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31(4):607–17.

    Article  CAS  PubMed  Google Scholar 

  46. Prie D, Urena Torres P, Friedlander G. Latest findings in phosphate homeostasis. Kidney Int. 2009;75(9):882–9.

    Article  CAS  PubMed  Google Scholar 

  47. Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger SL, Young B, et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol. 2005;16(2):520–8.

    Article  CAS  PubMed  Google Scholar 

  48. Voormolen N, Noordzij M, Grootendorst DC, Beetz I, Sijpkens YW, van Manen JG, et al. High plasma phosphate as a risk factor for decline in renal function and mortality in pre-dialysis patients. Nephrol Dial Transplant. 2007;22(10):2909–16.

    Article  CAS  PubMed  Google Scholar 

  49. Giachelli CM. Vascular calcification: in vitro evidence for the role of inorganic phosphate. J Am Soc Nephrol. 2003;14(9 Suppl 4):S300–4.

    Article  CAS  PubMed  Google Scholar 

  50. Shroff RC, Shanahan CM. The vascular biology of calcification. Semin Dial. 2007;20(2):103–9.

    Article  PubMed  Google Scholar 

  51. Block GA, Kilpatrick RD, Lowe KA, Wang W, Danese MD. CKD-mineral and bone disorder and risk of death and cardiovascular hospitalization in patients on hemodialysis. Clin J Am Soc Nephrol. 2013;8(12):2132–40.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, et al. Diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder: synopsis of the kidney disease: improving global outcomes 2017 clinical practice guideline update. Ann Intern Med. 2018;168(6):422–30.

    Article  PubMed  Google Scholar 

  53. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009:S1–130.

    Google Scholar 

  54. Sigrist MK, McIntyre CW. Vascular calcification is associated with impaired microcirculatory function in chronic haemodialysis patients. Nephron Clin Pract. 2008;108(2):c121–6.

    Article  CAS  PubMed  Google Scholar 

  55. London GM, Marty C, Marchais SJ, Guerin AP, Metivier F, de Vernejoul MC. Arterial calcifications and bone histomorphometry in end-stage renal disease. J Am Soc Nephrol. 2004;15(7):1943–51.

    Article  PubMed  Google Scholar 

  56. Chertow GM, Burke SK, Raggi P. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 2002;62(1):245–52.

    Article  CAS  PubMed  Google Scholar 

  57. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62(5):1524–38.

    Article  CAS  PubMed  Google Scholar 

  58. Wanner C, Zimmermann J, Schwedler S, Metzger T. Inflammation and cardiovascular risk in dialysis patients. Kidney Int Suppl. 2002;80:99–102.

    Article  Google Scholar 

  59. Herzig KA, Purdie DM, Chang W, Brown AM, Hawley CM, Campbell SB, et al. Is C-reactive protein a useful predictor of outcome in peritoneal dialysis patients? J Am Soc Nephrol. 2001;12(4):814–21.

    Article  CAS  PubMed  Google Scholar 

  60. Bakkaloglu SA, Saygili A, Sever L, Noyan A, Akman S, Ekim M, et al. Assessment of cardiovascular risk in paediatric peritoneal dialysis patients: a Turkish Pediatric Peritoneal Dialysis Study Group (TUPEPD) report. Nephrol Dial Transplant. 2009;24(11):3525–32.

    Article  PubMed  Google Scholar 

  61. Aguilera A, Sanchez-Tomero JA, Bajo MA, Ruiz-Caravaca ML, Alvarez V, del Peso G, et al. Malnutrition-inflammation syndrome is associated with endothelial dysfunction in peritoneal dialysis patients. Adv Perit Dial. 2003;19:240–5.

    PubMed  Google Scholar 

  62. Pecoits-Filho R, Sylvestre LC, Stenvinkel P. Chronic kidney disease and inflammation in pediatric patients: from bench to playground. Pediatr Nephrol. 2005;20(6):714–20.

    Article  PubMed  Google Scholar 

  63. Ketteler M, Wanner C, Metzger T, Bongartz P, Westenfeld R, Gladziwa U, et al. Deficiencies of calcium-regulatory proteins in dialysis patients: a novel concept of cardiovascular calcification in uremia. Kidney Int Suppl. 2003;84:S84–7.

    Article  CAS  Google Scholar 

  64. Wang AY, Woo J, Lam CW, Wang M, Chan IH, Gao P, et al. Associations of serum fetuin-A with malnutrition, inflammation, atherosclerosis and valvular calcification syndrome and outcome in peritoneal dialysis patients. Nephrol Dial Transplant. 2005;20(8):1676–85.

    Article  CAS  PubMed  Google Scholar 

  65. Levin A, Li YC. Vitamin D and its analogues: do they protect against cardiovascular disease in patients with kidney disease? Kidney Int. 2005;68(5):1973–81.

    Article  CAS  PubMed  Google Scholar 

  66. Shroff R, Egerton M, Bridel M, Shah V, Donald AE, Cole TJ, et al. A bimodal association of vitamin D levels and vascular disease in children on dialysis. J Am Soc Nephrol. 2008;19(6):1239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sasaki T, Watanabe M, Nagai Y, Hoshi T, Takasawa M, Nukata M, et al. Association of plasma homocysteine concentration with atherosclerotic carotid plaques and lacunar infarction. Stroke. 2002;33(6):1493–6.

    Article  CAS  PubMed  Google Scholar 

  68. Taruangsri P, Ong-Ajyooth L, Ong-Ajyooth S, Chaiyasoot W, Leowattana W, Sritippayawan S, et al. Relationship between hyperhomocysteinemia and atherosclerosis in chronic hemodialysis patients. J Med Assoc Thail. 2005;88(10):1373–81.

    Google Scholar 

  69. Civilibal M, Caliskan S, Oflaz H, Sever L, Candan C, Canpolat N, et al. Traditional and "new" cardiovascular risk markers and factors in pediatric dialysis patients. Pediatr Nephrol. 2007;22(7):1021–9.

    Article  PubMed  Google Scholar 

  70. Bennett-Richards K, Kattenhorn M, Donald A, Oakley G, Varghese Z, Rees L, et al. Does oral folic acid lower total homocysteine levels and improve endothelial function in children with chronic renal failure? Circulation. 2002;105(15):1810–5.

    Article  CAS  PubMed  Google Scholar 

  71. Ebbing M, Bonaa KH, Nygard O, Arnesen E, Ueland PM, Nordrehaug JE, et al. Cancer incidence and mortality after treatment with folic acid and vitamin B12. JAMA. 2009;302(19):2119–26.

    Article  CAS  PubMed  Google Scholar 

  72. Fadrowski JJ, Pierce CB, Cole SR, Moxey-Mims M, Warady BA, Furth SL. Hemoglobin decline in children with chronic kidney disease: baseline results from the chronic kidney disease in children prospective cohort study. Clin J Am Soc Nephrol. 2008;3(2):457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Staples AO, Wong CS, Smith JM, Gipson DS, Filler G, Warady BA, et al. Anemia and risk of hospitalization in pediatric chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(1):48–56.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Warady BA, Ho M. Morbidity and mortality in children with anemia at initiation of dialysis. Pediatr Nephrol. 2003;18(10):1055–62.

    Article  PubMed  Google Scholar 

  75. Feber J, Wong H, Geier P, Chaudry B, Filler G. Complications of chronic kidney disease in children post-renal transplantation - a single center experience. Pediatr Transplant. 2008;12(1):80–4.

    Article  PubMed  Google Scholar 

  76. Borzych-Duzalka D, Bilginer Y, Ha IS, Bak M, Rees L, Cano F, et al. Management of anemia in children receiving chronic peritoneal dialysis. J Am Soc Nephrol. 2013;24(4):665–76.

    Article  PubMed  PubMed Central  Google Scholar 

  77. White CT, Schisler T, Er L, Djurdjev O, Matsuda-Abedini M. CKD following kidney transplantation in children and adolescents. Am J Kidney Dis. 2008;51(6):996–1004.

    Article  PubMed  Google Scholar 

  78. Shroff RC, Donald AE, Hiorns MP, Watson A, Feather S, Milford D, et al. Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol. 2007;18(11):2996–3003.

    Article  CAS  PubMed  Google Scholar 

  79. Querfeld U, Schaefer F. Cardiovascular risk factors in children on dialysis: an update. Pediatr Nephrol. 2018;35:41.

    Article  PubMed  Google Scholar 

  80. Teng M, Wolf M, Lowrie E, Ofsthun N, Lazarus JM, Thadhani R. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med. 2003;349(5):446–56.

    Article  CAS  PubMed  Google Scholar 

  81. Tentori F, Hunt WC, Stidley CA, Rohrscheib MR, Bedrick EJ, Meyer KB, et al. Mortality risk among hemodialysis patients receiving different vitamin D analogs. Kidney Int. 2006;70(10):1858–65.

    Article  CAS  PubMed  Google Scholar 

  82. Wolf M, Shah A, Gutierrez O, Ankers E, Monroy M, Tamez H, et al. Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int. 2007;72(8):1004–13.

    Article  CAS  PubMed  Google Scholar 

  83. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359(6):584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shroff RC, Shah V, Hiorns MP, Schoppet M, Hofbauer LC, Hawa G, et al. The circulating calcification inhibitors, fetuin-A and osteoprotegerin, but not matrix Gla protein, are associated with vascular stiffness and calcification in children on dialysis. Nephrol Dial Transplant. 2008;23(10):3263–71.

    Article  CAS  PubMed  Google Scholar 

  85. Kanderian AS, Francis GS. Cardiac troponins and chronic kidney disease. Kidney Int. 2006;69(7):1112–4.

    Article  CAS  PubMed  Google Scholar 

  86. Johnstone LM, Jones CL, Grigg LE, Wilkinson JL, Walker RG, Powell HR. Left ventricular abnormalities in children, adolescents and young adults with renal disease. Kidney Int. 1996;50(3):998–1006.

    Article  CAS  PubMed  Google Scholar 

  87. Matteucci MC, Wuhl E, Picca S, Mastrostefano A, Rinelli G, Romano C, et al. Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J Am Soc Nephrol. 2006;17(1):218–26.

    Article  PubMed  Google Scholar 

  88. Bakkaloglu SA, Kandur Y, Serdaroglu E, Noyan A, Bayazit AK, Sever L, et al. Effect of the timing of dialysis initiation on left ventricular hypertrophy and inflammation in pediatric patients. Pediatr Nephrol. 2017;32(9):1595–602.

    Article  PubMed  Google Scholar 

  89. Bakkaloglu SA, Borzych D, Soo Ha I, Serdaroglu E, Buscher R, Salas P, et al. Cardiac geometry in children receiving chronic peritoneal dialysis: findings from the International Pediatric Peritoneal Dialysis Network (IPPN) registry. Clin J Am Soc Nephrol. 2011;6(8):1926–33.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Goren A, Glaser J, Drukker A. Diastolic function in children and adolescents on dialysis and after kidney transplantation: an echocardiographic assessment. Pediatr Nephrol. 1993;7(6):725–8.

    Article  CAS  PubMed  Google Scholar 

  91. Morris KP, Skinner JR, Wren C, Hunter S, Coulthard MG. Cardiac abnormalities in end stage renal failure and anaemia. Arch Dis Child. 1993;68(5):637–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mitsnefes MM, Kimball TR, Border WL, Witt SA, Glascock BJ, Khoury PR, et al. Impaired left ventricular diastolic function in children with chronic renal failure. Kidney Int. 2004;65(4):1461–6.

    Article  PubMed  Google Scholar 

  93. Mitsnefes MM, Kimball TR, Border WL, Witt SA, Glascock BJ, Khoury PR, et al. Abnormal cardiac function in children after renal transplantation. Am J Kidney Dis. 2004;43(4):721–6.

    Article  PubMed  Google Scholar 

  94. Saygili A, Yildirim SV, Cengiz N, Uslu Y, Tokel K, Saatci U. Assessment of left ventricular diastolic function by Doppler tissue imaging in children with end-stage renal disease. Acta Paediatr. 2005;94(8):1055–9.

    Article  PubMed  Google Scholar 

  95. Weaver DJ Jr, Kimball TR, Knilans T, Mays W, Knecht SK, Gerdes YM, et al. Decreased maximal aerobic capacity in pediatric chronic kidney disease. J Am Soc Nephrol. 2008;19(3):624–30.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chinali M, de Simone G, Matteucci MC, Picca S, Mastrostefano A, Anarat A, et al. Reduced systolic myocardial function in children with chronic renal insufficiency. J Am Soc Nephrol. 2007;18(2):593–8.

    Article  PubMed  Google Scholar 

  97. Mignot A, Donal E, Zaroui A, Reant P, Salem A, Hamon C, et al. Global longitudinal strain as a major predictor of cardiac events in patients with depressed left ventricular function: a multicenter study. J Am Soc Echocardiogr. 2010;23(10):1019–24.

    Article  PubMed  Google Scholar 

  98. Kramann R, Erpenbeck J, Schneider RK, Rohl AB, Hein M, Brandenburg VM, et al. Speckle tracking echocardiography detects uremic cardiomyopathy early and predicts cardiovascular mortality in ESRD. J Am Soc Nephrol. 2014;25(10):2351–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chinali M, Matteucci MC, Franceschini A, Doyon A, Pongiglione G, Rinelli G, et al. Advanced parameters of cardiac mechanics in children with CKD: the 4C study. Clin J Am Soc Nephrol. 2015;10(8):1357–63.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rumman RK, Slorach C, Hui W, Matsuda-Abedini M, Langlois V, Radhakrishnan S, et al. Cardiovascular structure and function in children with middle aortic syndrome and renal artery stenosis. Hypertension. 2017;70(6):1193–200.

    Article  CAS  PubMed  Google Scholar 

  101. Rumman RK, Ramroop R, Chanchlani R, Ghany M, Hebert D, Harvey EA, et al. Longitudinal assessment of myocardial function in childhood chronic kidney disease, during dialysis, and following kidney transplantation. Pediatr Nephrol. 2017;32(8):1401–10.

    Article  PubMed  Google Scholar 

  102. Malatesta-Muncher R, Wansapura J, Taylor M, Lindquist D, Hor K, Mitsnefes M. Early cardiac dysfunction in pediatric patients on maintenance dialysis and post kidney transplant. Pediatr Nephrol. 2012;27(7):1157–64.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hothi DK, Rees L, Marek J, Burton J, McIntyre CW. Pediatric myocardial stunning underscores the cardiac toxicity of conventional hemodialysis treatments. Clin J Am Soc Nephrol. 2009;4(4):790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 2000;342(20):1478–83.

    Article  CAS  PubMed  Google Scholar 

  105. Eifinger F, Wahn F, Querfeld U, Pollok M, Gevargez A, Kriener P, et al. Coronary artery calcifications in children and young adults treated with renal replacement therapy. Nephrol Dial Transplant. 2000;15(11):1892–4.

    Article  CAS  PubMed  Google Scholar 

  106. Groothoff JW, Gruppen MP, Offringa M, de Groot E, Stok W, Bos WJ, et al. Increased arterial stiffness in young adults with end-stage renal disease since childhood. J Am Soc Nephrol. 2002;13(12):2953–61.

    Article  PubMed  Google Scholar 

  107. Mitsnefes MM, Kimball TR, Kartal J, Witt SA, Glascock BJ, Khoury PR, et al. Cardiac and vascular adaptation in pediatric patients with chronic kidney disease: role of calcium-phosphorus metabolism. J Am Soc Nephrol. 2005;16(9):2796–803.

    Article  CAS  PubMed  Google Scholar 

  108. Covic A, Mardare N, Gusbeth-Tatomir P, Brumaru O, Gavrilovici C, Munteanu M, et al. Increased arterial stiffness in children on haemodialysis. Nephrol Dial Transplant. 2006;21(3):729–35.

    Article  PubMed  Google Scholar 

  109. Briese S, Wiesner S, Will JC, Lembcke A, Opgen-Rhein B, Nissel R, et al. Arterial and cardiac disease in young adults with childhood-onset end-stage renal disease-impact of calcium and vitamin D therapy. Nephrol Dial Transplant. 2006;21(7):1906–14.

    Article  CAS  PubMed  Google Scholar 

  110. Civilibal M, Caliskan S, Adaletli I, Oflaz H, Sever L, Candan C, et al. Coronary artery calcifications in children with end-stage renal disease. Pediatr Nephrol. 2006;21(10):1426–33.

    Article  PubMed  Google Scholar 

  111. Poyrazoglu HM, Dusunsel R, Yikilmaz A, Narin N, Anarat R, Gunduz Z, et al. Carotid artery thickness in children and young adults with end stage renal disease. Pediatr Nephrol. 2007;22(1):109–16.

    Article  PubMed  Google Scholar 

  112. Srivaths PR, Goldstein SL, Krishnamurthy R, Silverstein DM. High serum phosphorus and FGF 23 levels are associated with progression of coronary calcifications. Pediatr Nephrol. 2014;29(1):103–9.

    Article  PubMed  Google Scholar 

  113. Litwin M, Wuhl E, Jourdan C, Niemirska A, Schenk JP, Jobs K, et al. Evolution of large-vessel arteriopathy in paediatric patients with chronic kidney disease. Nephrol Dial Transplant. 2008;23(8):2552–7.

    Article  PubMed  Google Scholar 

  114. Brady TM, Schneider MF, Flynn JT, Cox C, Samuels J, Saland J, et al. Carotid intima-media thickness in children with CKD: results from the CKiD study. Clin J Am Soc Nephrol. 2012;7(12):1930–7.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Srivaths PR, Goldstein SL, Silverstein DM, Krishnamurthy R, Brewer ED. Elevated FGF 23 and phosphorus are associated with coronary calcification in hemodialysis patients. Pediatr Nephrol. 2011;26(6):945–51.

    Article  PubMed  Google Scholar 

  116. Srivaths PR, Silverstein DM, Leung J, Krishnamurthy R, Goldstein SL. Malnutrition-inflammation-coronary calcification in pediatric patients receiving chronic hemodialysis. Hemodial Int Int Symp Home Hemodial. 2010;14(3):263–9.

    Article  Google Scholar 

  117. Chen J, Budoff MJ, Reilly MP, Yang W, Rosas SE, Rahman M, et al. Coronary artery calcification and risk of cardiovascular disease and death among patients with chronic kidney disease. JAMA Cardiol. 2017;2(6):635–43.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Xie Q, Ge X, Shang D, Li Y, Yan H, Tian J, et al. Coronary artery calcification score as a predictor of all-cause mortality and cardiovascular outcome in peritoneal dialysis patients. Perit Dial Int: journal of the International Society for Peritoneal Dialysis. 2016;36(2):163–70.

    Article  CAS  Google Scholar 

  119. Krmar RT, Balzano R, Jogestrand T, Cedazo-Minguez A, Englund MS, Berg UB. Prospective analysis of carotid arterial wall structure in pediatric renal transplants with ambulatory normotension and in treated hypertensive recipients. Pediatr Transplant. 2008;12(4):412–9.

    Article  PubMed  Google Scholar 

  120. Mitsnefes MM. Understanding carotid artery intima-media thickness in childhood: lessons from studies in children with renal transplants. Pediatr Transplant. 2008;12(4):377–80.

    Article  PubMed  Google Scholar 

  121. Shroff RC, McNair R, Figg N, Skepper JN, Schurgers L, Gupta A, et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation. 2008;118(17):1748–57.

    Article  CAS  PubMed  Google Scholar 

  122. Reynolds JL, Skepper JN, McNair R, Kasama T, Gupta K, Weissberg PL, et al. Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol. 2005;16(10):2920–30.

    Article  CAS  PubMed  Google Scholar 

  123. van Summeren MJ, Hameleers JM, Schurgers LJ, Hoeks AP, Uiterwaal CS, Kruger T, et al. Circulating calcification inhibitors and vascular properties in children after renal transplantation. Pediatr Nephrol. 2008;23(6):985–93.

    Article  PubMed  Google Scholar 

  124. Schurgers LJ, Teunissen KJ, Knapen MH, Kwaijtaal M, van Diest R, Appels A, et al. Novel conformation-specific antibodies against matrix gamma-carboxyglutamic acid (Gla) protein: undercarboxylated matrix Gla protein as marker for vascular calcification. Arterioscler Thromb Vasc Biol. 2005;25(8):1629–33.

    Article  CAS  PubMed  Google Scholar 

  125. Smith ER, Ford ML, Tomlinson LA, Bodenham E, McMahon LP, Farese S, et al. Serum calcification propensity predicts all-cause mortality in predialysis CKD. J Am Soc Nephrol. 2014;25(2):339–48.

    Article  CAS  PubMed  Google Scholar 

  126. Pasch A, Block GA, Bachtler M, Smith ER, Jahnen-Dechent W, Arampatzis S, et al. Blood calcification propensity, cardiovascular events, and survival in patients receiving hemodialysis in the EVOLVE trial. Clin J Am Soc Nephrol. 2017;12(2):315–22.

    Article  CAS  PubMed  Google Scholar 

  127. Scialla JJ, Kao WH, Crainiceanu C, Sozio SM, Oberai PC, Shafi T, et al. Biomarkers of vascular calcification and mortality in patients with ESRD. Clin J Am Soc Nephrol. 2014;9(4):745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.

    Article  CAS  PubMed  Google Scholar 

  129. Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007;71(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  130. Rostand SG, Drueke TB. Parathyroid hormone, vitamin D, and cardiovascular disease in chronic renal failure. Kidney Int. 1999;56(2):383–92.

    Article  CAS  PubMed  Google Scholar 

  131. Doyon A, Schmiedchen B, Sander A, Bayazit A, Duzova A, Canpolat N, et al. Genetic, environmental, and disease-associated correlates of vitamin D status in children with CKD. Clin J Am Soc Nephrol. 2016;11(7):1145–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shroff R, Wan M, Nagler EV, Bakkaloglu S, Cozzolino M, Bacchetta J, et al. Clinical practice recommendations for treatment with active vitamin D analogues in children with chronic kidney disease stages 2-5 and on dialysis. Nephrol Dial Transplant. 2017;32(7):1114–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shroff R, Wan M, Nagler EV, Bakkaloglu S, Fischer DC, Bishop N, et al. Clinical practice recommendations for native vitamin D therapy in children with chronic kidney disease stages 2-5 and on dialysis. Nephrol Dial Transplant. 2017;32(7):1098–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002;110(2):229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bodyak N, Ayus JC, Achinger S, Shivalingappa V, Ke Q, Chen YS, et al. Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals. Proc Natl Acad Sci U S A. 2007;104(43):16810–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zittermann A, Schleithoff SS, Koerfer R. Putting cardiovascular disease and vitamin D insufficiency into perspective. Br J Nutr. 2005;94(4):483–92.

    Article  CAS  PubMed  Google Scholar 

  137. Schoppet M, Shroff RC, Hofbauer LC, Shanahan CM. Exploring the biology of vascular calcification in chronic kidney disease: what's circulating? Kidney Int. 2008;73(4):384–90.

    Article  CAS  PubMed  Google Scholar 

  138. Shroff RC, McNair R, Skepper JN, Figg N, Schurgers LJ, Deanfield J, et al. Chronic mineral dysregulation promotes vascular smooth muscle cell adaptation and extracellular matrix calcification. J Am Soc Nephrol. 2010;21(1):103–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu Y, Drozdov I, Shroff R, Beltran LE, Shanahan CM. Prelamin A accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in vascular smooth muscle cells. Circ Res. 2013;112(10):e99–109.

    Article  CAS  PubMed  Google Scholar 

  140. Olive M, Harten I, Mitchell R, Beers JK, Djabali K, Cao K, et al. Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol. 2010;30(11):2301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gerhard-Herman M, Smoot LB, Wake N, Kieran MW, Kleinman ME, Miller DT, et al. Mechanisms of premature vascular aging in children with Hutchinson-Gilford progeria syndrome. Hypertension. 2012;59(1):92–7.

    Article  CAS  PubMed  Google Scholar 

  142. Sanchis P HC, Liu Y, Beltran LE, Ahmad S, Jacob AP, Furmanik M, Laycock J, Long DA, Shroff R, Shanahan CM. Arterial ‘inflammaging’ drives vascular calcification in children on dialysis. Kidney International Accepted for publication 2019.

    Google Scholar 

  143. Malluche HH, Blomquist G, Monier-Faugere MC, Cantor TL, Davenport DL. High parathyroid hormone level and osteoporosis predict progression of coronary artery calcification in patients on dialysis. J Am Soc Nephrol. 2015;26(10):2534–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cejka D, Weber M, Diarra D, Reiter T, Kainberger F, Haas M. Inverse association between bone microarchitecture assessed by HR-pQCT and coronary artery calcification in patients with end-stage renal disease. Bone. 2014;64:33–8.

    Article  CAS  PubMed  Google Scholar 

  145. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69(11):1945–53.

    Article  CAS  PubMed  Google Scholar 

  146. Bell L, Espinosa P. Intensive in-center hemodialysis for children: a case for longer dialysis duration. Hemodial Int Int Symp Home Hemodial. 2003;7(4):290–5.

    Article  Google Scholar 

  147. Goldstein SL, Silverstein DM, Leung JC, Feig DI, Soletsky B, Knight C, et al. Frequent hemodialysis with NxStage system in pediatric patients receiving maintenance hemodialysis. Pediatr Nephrol. 2008;23(1):129–35.

    Article  PubMed  Google Scholar 

  148. Warady BA, Fischbach M, Geary D, Goldstein SL. Frequent hemodialysis in children. Adv Chronic Kidney Dis. 2007;14(3):297–303.

    Article  PubMed  Google Scholar 

  149. Maduell F, Navarro V, Torregrosa E, Rius A, Dicenta F, Cruz MC, et al. Change from three times a week on-line hemodiafiltration to short daily on-line hemodiafiltration. Kidney Int. 2003;64(1):305–13.

    Article  PubMed  Google Scholar 

  150. Punal J, Lema LV, Sanhez-Guisande D, Ruano-Ravina A. Clinical effectiveness and quality of life of conventional haemodialysis versus short daily haemodialysis: a systematic review. Nephrol Dial Transplant. 2008;23(8):2634–46.

    Article  PubMed  Google Scholar 

  151. Coyte PC, Young LG, Tipper BL, Mitchell VM, Stoffman PR, Willumsen J, et al. An economic evaluation of hospital-based hemodialysis and home-based peritoneal dialysis for pediatric patients. Am J Kidney Dis. 1996;27(4):557–65.

    Article  CAS  PubMed  Google Scholar 

  152. McFarlane PA, Bayoumi AM, Pierratos A, Redelmeier DA. The impact of home nocturnal hemodialysis on end-stage renal disease therapies: a decision analysis. Kidney Int. 2006;69(5):798–805.

    Article  CAS  PubMed  Google Scholar 

  153. Geary DF, Piva E, Tyrrell J, Gajaria MJ, Picone G, Keating LE, et al. Home nocturnal hemodialysis in children. J Pediatr. 2005;147(3):383–7.

    Article  PubMed  Google Scholar 

  154. Blankestijn PJ, Ledebo I, Canaud B. Hemodiafiltration: clinical evidence and remaining questions. Kidney Int. 2010;77(7):581–7.

    Article  PubMed  Google Scholar 

  155. Ledebo I, Blankestijn PJ. Haemodiafiltration-optimal efficiency and safety. NDT Plus. 2010;3(1):8–16.

    PubMed  Google Scholar 

  156. Mostovaya IM, Grooteman MP, Basile C, Davenport A, de Roij van Zuijdewijn CL, Wanner C, et al. High convection volume in online post-dilution haemodiafiltration: relevance, safety and costs. Clin Kidney J. 2015;8(4):368–73.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Maduell F, Moreso F, Pons M, Ramos R, Mora-Macia J, Carreras J, et al. High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J Am Soc Nephrol. 2013;24(3):487–97.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ok E, Asci G, Toz H, Ok ES, Kircelli F, Yilmaz M, et al. Mortality and cardiovascular events in online haemodiafiltration (OL-HDF) compared with high-flux dialysis: results from the Turkish OL-HDF Study. Nephrol Dial Transplant. 2013;28(1):192–202.

    Article  PubMed  Google Scholar 

  159. Peters SA, Bots ML, Canaud B, Davenport A, Grooteman MP, Kircelli F, et al. Haemodiafiltration and mortality in end-stage kidney disease patients: a pooled individual participant data analysis from four randomized controlled trials. Nephrol Dial Transplant. 2016;31(6):978–84.

    Article  PubMed  Google Scholar 

  160. Fadel FI, Makar SH, Zekri H, Ahmed DH, Aon AH. The effect of on-line hemodiafiltration on improving the cardiovascular function parameters in children on regular dialysis. Saudi J Kidney Dis Transpl. 2015;26(1):39–46.

    Article  PubMed  Google Scholar 

  161. Morad AA, Bazaraa HM, Abdel Aziz RE, Abdel Halim DA, Shoman MG, Saleh ME. Role of online hemodiafiltration in improvement of inflammatory status in pediatric patients with end-stage renal disease. Iran J Kidney Dis. 2014;8(6):481–5.

    PubMed  Google Scholar 

  162. Shroff R, Bayazit A, Stefanidis CJ, Askiti V, Azukaitis K, Canpolat N, et al. Effect of haemodiafiltration vs conventional haemodialysis on growth and cardiovascular outcomes in children - the HDF, heart and height (3H) study. BMC Nephrol. 2018;19(1):199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Agbas A, Canpolat N, Caliskan S, Yilmaz A, Ekmekci H, Mayes M, et al. Hemodiafiltration is associated with reduced inflammation, oxidative stress and improved endothelial risk profile compared to high-flux hemodialysis in children. PLoS One. 2018;13(6):e0198320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Hothi DK, Stronach L, Sinnott K. Home hemodialysis in children. Hemodial Int Int Symp Home Hemodial. 2016;20(3):349–57.

    Article  Google Scholar 

  165. Hothi DK, Harvey E, Piva E, Keating L, Secker D, Geary DF. Calcium and phosphate balance in adolescents on home nocturnal haemodialysis. Pediatr Nephrol. 2006;21(6):835–41.

    Article  PubMed  Google Scholar 

  166. de Camargo MF, Henriques CL, Vieira S, Komi S, Leao ER, Nogueira PC. Growth of children with end-stage renal disease undergoing daily hemodialysis. Pediatr Nephrol. 2014;29(3):439–44.

    Article  PubMed  Google Scholar 

  167. Hoppe A, von Puttkamer C, Linke U, Kahler C, Booss M, Braunauer-Kolberg R, et al. A hospital-based intermittent nocturnal hemodialysis program for children and adolescents. J Pediatr. 2011;158(1):95–9, 9 e1.

    Article  PubMed  Google Scholar 

  168. Thumfart J, Muller D, Wagner S, Jayanti A, Borzych-Duzalka D, Schaefer F, et al. Barriers for implementation of intensified hemodialysis: survey results from the International Pediatric Dialysis Network. Pediatr Nephrol. 2018;33(4):705–12.

    Article  PubMed  Google Scholar 

  169. Wuhl E, Fusch C, Scharer K, Mehls O, Schaefer F. Assessment of total body water in paediatric patients on dialysis. Nephrol Dial Transplant. 1996;11(1):75–80.

    Article  CAS  PubMed  Google Scholar 

  170. Krause I, Birk E, Davidovits M, Cleper R, Blieden L, Pinhas L, et al. Inferior vena cava diameter: a useful method for estimation of fluid status in children on haemodialysis. Nephrol Dial Transplant. 2001;16(6):1203–6.

    Article  CAS  PubMed  Google Scholar 

  171. Katzarski KS, Charra B, Luik AJ, Nisell J, Divino Filho JC, Leypoldt JK, et al. Fluid state and blood pressure control in patients treated with long and short haemodialysis. Nephrol Dial Transplant. 1999;14(2):369–75.

    Article  CAS  PubMed  Google Scholar 

  172. Muller D, Zimmering M, Chan CT, McFarlane PA, Pierratos A, Querfeld U. Intensified hemodialysis regimens: neglected treatment options for children and adolescents. Pediatr Nephrol. 2008;23(10):1729–36.

    Article  PubMed  Google Scholar 

  173. Thumfart J, Puttkamer CV, Wagner S, Querfeld U, Muller D. Hemodiafiltration in a pediatric nocturnal dialysis program. Pediatr Nephrol. 2014;29(8):1411–6.

    Article  PubMed  Google Scholar 

  174. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis. 2005;45(4 Suppl 3):S1–153.

    Google Scholar 

  175. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr. 2009;22(6):709–14.

    Article  PubMed  Google Scholar 

  176. Foster BJ, Mackie AS, Mitsnefes M, Ali H, Mamber S, Colan SD. A novel method of expressing left ventricular mass relative to body size in children. Circulation. 2008;117(21):2769–75.

    Article  PubMed  Google Scholar 

  177. Borzych D, Bakkaloglu SA, Zaritsky J, Suarez A, Wong W, Ranchin B, et al. Defining left ventricular hypertrophy in children on peritoneal dialysis. Clin J Am Soc Nephrol. 2011;6(8):1934–43.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3):e20171904.

    Article  PubMed  Google Scholar 

  179. Chinali M, Emma F, Esposito C, Rinelli G, Franceschini A, Doyon A, et al. Left ventricular mass indexing in infants, children, and adolescents: a simplified approach for the identification of left ventricular hypertrophy in clinical practice. J Pediatr. 2016;170:193–8.

    Article  PubMed  Google Scholar 

  180. K/DOQI Clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2004;42(4, Suppl 3):S1–S201.

    Google Scholar 

  181. Klaus G, Watson A, Edefonti A, Fischbach M, Ronnholm K, Schaefer F, et al. Prevention and treatment of renal osteodystrophy in children on chronic renal failure: European guidelines. Pediatr Nephrol. 2006;21(2):151–9.

    Article  CAS  PubMed  Google Scholar 

  182. Isakova T, Gutierrez OM, Chang Y, Shah A, Tamez H, Smith K, et al. Phosphorus binders and survival on hemodialysis. J Am Soc Nephrol. 2009;20(2):388–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Rees L, Shroff RC. Phosphate binders in CKD: chalking out the differences. Pediatr Nephrol. 2010;25(3):385–94.

    Article  PubMed  Google Scholar 

  184. Salusky IB. A new era in phosphate binder therapy: what are the options? Kidney Int Suppl. 2006;105:S10–5.

    Article  CAS  Google Scholar 

  185. Jamal SA, Vandermeer B, Raggi P, Mendelssohn DC, Chatterley T, Dorgan M, et al. Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet. 2013;382(9900):1268–77.

    Article  CAS  PubMed  Google Scholar 

  186. Mahdavi H, Kuizon BD, Gales B, Wang HJ, Elashoff RM, Salusky IB. Sevelamer hydrochloride: an effective phosphate binder in dialyzed children. Pediatr Nephrol. 2003;18(12):1260–4.

    Article  PubMed  Google Scholar 

  187. Pieper AK, Haffner D, Hoppe B, Dittrich K, Offner G, Bonzel KE, et al. A randomized crossover trial comparing sevelamer with calcium acetate in children with CKD. Am J Kidney Dis. 2006;47(4):625–35.

    Article  CAS  PubMed  Google Scholar 

  188. Salusky IB, Goodman WG, Sahney S, Gales B, Perilloux A, Wang HJ, et al. Sevelamer controls parathyroid hormone-induced bone disease as efficiently as calcium carbonate without increasing serum calcium levels during therapy with active vitamin D sterols. J Am Soc Nephrol. 2005;16(8):2501–8.

    Article  CAS  PubMed  Google Scholar 

  189. Wesseling-Perry K, Harkins GC, Wang HJ, Sahney S, Gales B, Elashoff RM, et al. Response of different PTH assays to therapy with sevelamer or CaCO3 and active vitamin D sterols. Pediatr Nephrol. 2009;24(7):1355–61.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Hutchison AJ. Oral phosphate binders. Kidney Int. 2009;75(9):906–14.

    Article  CAS  PubMed  Google Scholar 

  191. Fathallah-Shaykh S, Drozdz D, Flynn J, Jenkins R, Wesseling-Perry K, Swartz SJ, et al. Efficacy and safety of sevelamer carbonate in hyperphosphatemic pediatric patients with chronic kidney disease. Pediatr Nephrol. 2018;33(2):325–33.

    Article  PubMed  Google Scholar 

  192. Denburg MR, Kumar J, Jemielita T, Brooks ER, Skversky A, Portale AA, et al. Fracture burden and risk factors in childhood CKD: results from the CKiD cohort study. J Am Soc Nephrol. 2016;27(2):543–50.

    Article  CAS  PubMed  Google Scholar 

  193. Wang C, Liu X, Zhou Y, Li S, Chen Y, Wang Y, et al. New conclusions regarding comparison of Sevelamer and calcium-based phosphate binders in coronary-artery calcification for dialysis patients: a meta-analysis of randomized controlled trials. PLoS One. 2015;10(7):e0133938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Palmer SC, Gardner S, Tonelli M, Mavridis D, Johnson DW, Craig JC, et al. Phosphate-binding agents in adults with CKD: a network meta-analysis of randomized trials. Am J Kidney Dis. 2016;68(5):691–702.

    Article  CAS  PubMed  Google Scholar 

  195. Civilibal M, Caliskan S, Kurugoglu S, Candan C, Canpolat N, Sever L, et al. Progression of coronary calcification in pediatric chronic kidney disease stage 5. Pediatr Nephrol. 2009;24(3):555–63.

    Article  PubMed  Google Scholar 

  196. Suki WN, Zabaneh R, Cangiano JL, Reed J, Fischer D, Garrett L, et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int. 2007;72(9):1130–7.

    Article  CAS  PubMed  Google Scholar 

  197. Savica V, Calo LA, Monardo P, Davis PA, Granata A, Santoro D, et al. Salivary phosphate-binding chewing gum reduces hyperphosphatemia in dialysis patients. J Am Soc Nephrol. 2009;20(3):639–44.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Rees L, Shroff R. The demise of calcium-based phosphate binders-is this appropriate for children? Pediatr Nephrol. 2015;30(12):2061–71.

    Article  PubMed  Google Scholar 

  199. Ketteler M, Elder GJ, Evenepoel P, Ix JH, Jamal SA, Lafage-Proust MH, et al. Revisiting KDIGO clinical practice guideline on chronic kidney disease-mineral and bone disorder: a commentary from a kidney disease: improving global outcomes controversies conference. Kidney Int. 2015;87(3):502–28.

    Article  PubMed  Google Scholar 

  200. Dasgupta I, Shroff R, Bennett-Jones D, McVeigh G, Group NHGD. Management of hyperphosphataemia in chronic kidney disease: summary of National Institute for Health and Clinical Excellence (NICE) guideline. Nephron Clin Pract. 2013;124(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  201. Hahn D, Hodson EM, Craig JC. Interventions for metabolic bone disease in children with chronic kidney disease. Cochrane Database Syst Rev. 2015;(11):CD008327.

    Google Scholar 

  202. Denburg MR, Tsampalieros AK, de Boer IH, Shults J, Kalkwarf HJ, Zemel BS, et al. Mineral metabolism and cortical volumetric bone mineral density in childhood chronic kidney disease. J Clin Endocrinol Metab. 2013;98(5):1930–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Drueke TB. Treatment of secondary hyperparathyroidism of dialysis patients with calcimimetics as a valuable addition to established therapeutic means. Pediatr Nephrol. 2005;20(3):399–403.

    Article  PubMed  Google Scholar 

  204. Geary DF, Hodson EM, Craig JC. Interventions for bone disease in children with chronic kidney disease. Cochrane Database Syst Rev. 2010;(1):CD008327.

    Google Scholar 

  205. McKay CP, Portale A. Emerging topics in pediatric bone and mineral disorders 2008. Semin Nephrol. 2009;29(4):370–8.

    Article  CAS  PubMed  Google Scholar 

  206. Schaefer B, Schlosser K, Wuhl E, Schall P, Klaus G, Schaefer F, et al. Long-term control of parathyroid hormone and calcium-phosphate metabolism after parathyroidectomy in children with chronic kidney disease. Nephrol Dial Transplant. 2010;25(8):2590–5.

    Article  CAS  PubMed  Google Scholar 

  207. Mak RH. Metabolic effects of erythropoietin in patients on peritoneal dialysis. Pediatr Nephrol. 1998;12(8):660–5.

    Article  CAS  PubMed  Google Scholar 

  208. Mak RH. Effect of metabolic acidosis on insulin action and secretion in uremia. Kidney Int. 1998;54(2):603–7.

    Article  CAS  PubMed  Google Scholar 

  209. KDIGO. Clinical practice guideline for lipid management in chronic kidney disease. Kidney Int Suppl. 2013;3(3):259–305.

    Google Scholar 

  210. Goren A, Stankiewicz H, Goldstein R, Drukker A. Fish oil treatment of hyperlipidemia in children and adolescents receiving renal replacement therapy. Pediatrics. 1991;88(2):265–8.

    Article  CAS  PubMed  Google Scholar 

  211. Wanner C, Krane V, Marz W, Olschewski M, Mann JF, Ruf G, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353(3):238–48.

    Article  CAS  PubMed  Google Scholar 

  212. Fellstrom BC, Jardine AG, Schmieder RE, Holdaas H, Bannister K, Beutler J, et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med. 2009;360(14):1395–407.

    Article  CAS  PubMed  Google Scholar 

  213. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377(9784):2181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Upadhyay A, Earley A, Lamont JL, Haynes S, Wanner C, Balk EM. Lipid-lowering therapy in persons with chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med. 2012;157(4):251–62.

    Article  PubMed  Google Scholar 

  215. Hou W, Lv J, Perkovic V, Yang L, Zhao N, Jardine MJ, et al. Effect of statin therapy on cardiovascular and renal outcomes in patients with chronic kidney disease: a systematic review and meta-analysis. Eur Heart J. 2013;34(24):1807–17.

    Article  CAS  PubMed  Google Scholar 

  216. Warady BA, Neu AM, Schaefer F. Optimal care of the infant, child, and adolescent on dialysis: 2014 update. Am J Kidney Dis. 2014;64(1):128–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rukshana Shroff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shroff, R., Mitsnefes, M.M. (2021). The Cardiovascular Status of Pediatric Dialysis Patients. In: Warady, B.A., Alexander, S.R., Schaefer, F. (eds) Pediatric Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-030-66861-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66861-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66860-0

  • Online ISBN: 978-3-030-66861-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics