Skip to main content
Log in

Traditional and “new” cardiovascular risk markers and factors in pediatric dialysis patients

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) is the principal cause of mortality in patients with end-stage renal disease (ESRD). The aim of this study was to analyze carotid intima-media thickness (cIMT), endothelium-dependent dilatation (EDD), and left ventricular mass index (LVMI) as the cardiovascular risk markers and to investigate the independent risk factors of these markers in pediatric dialysis patients. This study included 39 children and adolescents undergoing dialysis (15 hemodialysis and 24 peritoneal dialysis) and 15 age- and gender-matched healthy subjects. The cIMT and EDD were assessed by high-resolution ultrasound, and LVMI was calculated from standard echocardiographic measurements. Compared with control subjects, cIMT standard deviation scores (SDS), LVMI, total homocysteine (tHcy), and high-sensitivity C-reactive protein (hs-CRP) values were significantly higher in patients, but EDD values did not differ. The mean hs-CRP level was significantly higher in hemodialysis (HD) patients than in peritoneal dialysis (PD) patients. The cIMT-SDS and LVMI were associated with several variables in univariate analysis. Stepwise linear regression analysis, indexed SBP (p = 0.017), and hemoglobin (p = 0.001) turned out to be independent variables for predicting LVMI, and a significant predictor of cIMT was indexed diastolic blood pressure (DBP) (p = 0.035). The causes of atherosclerosis and left ventricular hypertrophy are multifactorial in children and adolescents with ESRD. Better management of hypertension and anemia may be priorities for preventing or improving CVD in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Longenecker JC, Coresh J, Powe NR, Levey AS, Fink NE, Martin A, Klag MJ (2002) Traditional cardiovascular disease risk factors in dialysis patients compared with the general population: the CHOICE study. J Am Soc Nephrol 13:1918–1927

    Article  PubMed  Google Scholar 

  2. Goicoechea M, Garcia de Vinuesa S, Gomez-Campdera F, Luno J (2005) Predictive cardiovascular risk factors in patients with chronic kidney disease. Kidney Int 67(Suppl 93):S35–S38

    Article  Google Scholar 

  3. Bayes B, Pastor MC, Bonal J, Romero R (2005) “New” cardiovascular risk factors in patients with chronic kidney disease: role of folic acid treatment. Kidney Int 67(Suppl 93):S39–S43

    Article  Google Scholar 

  4. Bayes B, Pastor MC, Bonal J, Junca J, Hernandez JM, Riutort N, Foraster A, Romero R (2003) Homocysteine, C-reactive protein, lipid peroxidation and mortality in haemodialysis patients. Nephrol Dial Transplant 18:106–112

    Article  CAS  PubMed  Google Scholar 

  5. Briese S, Wiesner S, Will JC, Lembcke A, Opgen-Rhein B, Nissel R, Wernecke KD, Andreae J, Haffner D, Querfeld U (2006) Arterial and cardiac disease in young adults with childhood-onset end-stage renal disease - impact of calcium and vitamin D therapy. Nephrol Dial Transplant 21:1906–1914

    Article  CAS  PubMed  Google Scholar 

  6. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, Mehls O, Schaefer F (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106:100–105

    PubMed  Google Scholar 

  7. Jourdan C, Wuhl E, Litwin M, Fahr K, Trelewicz J, Jobs K, Schenk JP, Grenda R, Mehls O, Troger J, Schaefer F (2005) Normative values for intima-media thickness and distensibility of large arteries in healthy adolescents. J Hypertens 23:1707–1715

    Article  CAS  PubMed  Google Scholar 

  8. Ishizu T, Ishimitsu T, Yanagi H, Seo Y, Obara K, Moriyama N, Watanabe S, Yamaguchi I (2004) Effect of age on carotid arterial intima-media thickness in childhood. Heart Vessels 19:189–195

    Article  PubMed  Google Scholar 

  9. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, Lloyd JK, Deanfield JE (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340:1111–1115

    Article  CAS  PubMed  Google Scholar 

  10. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. J Am Coll Cardiol 57:450–458

    Article  CAS  Google Scholar 

  11. De Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, Alderman MH (1992) Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol 20:1251–1260

    Article  PubMed  Google Scholar 

  12. De Simone G, Devereux RB, Daniels SR, Koren MJ, Meyer RA, Laragh JH (1995) Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity of predict cardiovascular risk. J Am Coll Cardiol 25:1056–1062

    Article  PubMed  Google Scholar 

  13. Groothoff JW, Lilien MR, van der Kar NCAJ, Wolff ED, Davin JC (2005) Cardiovascular disease as a late complication of end-stage renal disease in children. Pediatr Nephrol 20:374–379

    Article  PubMed  Google Scholar 

  14. Litwin M, Wuhl E, Jourdan C, Trelewicz J, Niemirska A, Fahr K, Jobs K, Grenda R, Wawer ZT, Rajszys P, Troger J, Mehls O, Schaefer F (2005) Altered morphologic properties of large arteries in children with chronic renal failure and after renal transplantation. J Am Soc Nephrol 16:1494–1500

    Article  PubMed  Google Scholar 

  15. Haydar AA, Hujairi NMA, Covic AA, Pereira D, Rubens M, Goldsmith DJA (2004) Coronary artery calcification is related to coronary atherosclerosis in chronic renal disease patients: a study comparing EBCT-generated coronary artery calcium scores and coronary angiography. Nephrol Dial Transplant 19:2307–2312

    Article  PubMed  Google Scholar 

  16. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, Wang Y, Chung J, Emerick A, Greaser L, Elashoff RM, Salusky IB (2000) Coronary artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 432:1478–1483

    Article  Google Scholar 

  17. Civilibal M, Caliskan S, Adaletli I, Oflaz H, Sever L, Candan C, Canpolat N, Kasapcopur O, Kuruoglu S, Arisoy N (2006) Coronary artery calcifications in children with end-stage renal disease. Pediatr Nephrol 21:1426–1433

    Article  PubMed  Google Scholar 

  18. Thambyrajah J, Landray MJ, McGlynn FJ, Jones HJ, Wheeler DC, Townend JN (2000) Abnormalities of endothelial function in patients with predialysis renal failure. Heart 83:205–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oflaz H, Pusuroglu H, Genchallac H, Demirel S, Bugra Z, Sever MS, Yildiz A (2003) Endothelial function is more impaired in hemodialysis patients than renal transplant recipients. Clin Transplant 17:528–533

    Article  PubMed  Google Scholar 

  20. Lilien MR, Stroes ES, Op’t Roodt J, de Jongh S, Schroder CH, Koomans HA (2003) Vascular function in children after renal transplantation. Am J Kidney Dis 41:684–691

    Article  PubMed  Google Scholar 

  21. Lilien MR, Koomans HA, Schroder CH (2005) Hemodialysis acutely impairs endothelial function in children. Pediatr Nephrol 20:200–204

    Article  PubMed  Google Scholar 

  22. Lilien MR, Schroder CH, Koomans HA (2005) Endothelial function in pediatric patients on peritoneal dialysis: the need for data. Perit Dial Int 25(Suppl 3):S127–S129

    PubMed  Google Scholar 

  23. Kari JA, Donald AE, Vallance DT, Bruckdorfer KR, Leone A, Mullen MJ, Bunce T, Dorado B, Deanfield JE, Rees L (1997) Physiology and biochemistry of endothelial function in children with chronic renal failure. Kidney Int 52:468–472

    Article  CAS  PubMed  Google Scholar 

  24. Bolton CH, Downs LG, Victory JG, Dwight JF, Tomson CR, Mackness MI, Pinkney JH (2001) Endothelial dysfunction in chronic renal failure: roles of lipoprotein oxidation and pro-inflammatory cytokines. Nephrol Dial Transplant 16:1189–1197

    Article  CAS  PubMed  Google Scholar 

  25. Blacher J, Demuth K, Guerin AP, Vadez C, Moatti N, Safar ME, London GM (1999) Association between plasma homocysteine concentrations and cardiac hypertrophy in end-stage renal disease. J Nephrol 12:248–255

    CAS  PubMed  Google Scholar 

  26. Buccianti G, Baragetti I, Bamonti F, Furiani S, Dorighet V, Patrosso C (2004) Plasma homocysteine levels and cardiovascular mortality in patients with end-stage renal disease. J Nephrol 17:405–410

    CAS  PubMed  Google Scholar 

  27. Lilien M, Duran M, Van Hoeck K, Poll-The BT, Schroder C (1999) Hyperhomocyst(e)inaemia in children with chronic renal failure. Nephrol Dial Transplant 14:366–368

    CAS  PubMed  Google Scholar 

  28. Sasaki T, Watanabe M, Nagai Y, Hoshi T, Takasawa M, Nukata M, Taguchi A, Kitagawa K, Kinoshita N, Matsumoto M (2002) Association of plasma homocysteine concentration with atherosclerotic carotid plaques and lacunar infarction. Stroke 33:1493–1496

    Article  CAS  PubMed  Google Scholar 

  29. Taruangsri P, Ong-Ajyooth L, Ong-Ajyooth S, Chaiyasoot W, Leowattana W, Sritippayawan S, Vareesangthip K, Chanchairujira T, Vasuvattakul S, Shayakul C, Vanichakarn S (2005) Relationship between hyperhomocysteinemia and atherosclerosis in chronic hemodialysis patients. J Med Assoc Thai 88:1373–1381

    PubMed  Google Scholar 

  30. Mitsnefes MM, Daniels SR, Schwartz SM, Meyer RA, Khoury P, Strife F (2000) Severe left ventricular hypertrophy in pediatric dialysis: prevalence and predictors. Pediatr Nephrol 14:898–902

    Article  CAS  PubMed  Google Scholar 

  31. Bennett-Richards K, Kattenhorn M, Donald A, Oakley G, Varghese Z, Rees L, Deanfield JE (2002) Does oral folic acid lower total homocysteine levels and improve endothelial function in children with chronic renal failure? Circulation 105:1810–1815

    Article  CAS  PubMed  Google Scholar 

  32. Righetti M, Serbelloni P, Milani S, Ferrario G (2006) Homocysteine-lowering vitamin B treatment decreases cardiovascular events in hemodialysis patients. Blood Purif 24:379–386

    Article  CAS  PubMed  Google Scholar 

  33. Poyrazoðlu HM, Düþünsel R, Narin F, Gunduz Z, Narin N, Karakukcu M, Tahan F (2004) Homocysteine and left ventricular hypertrophy in children with chronic renal failure. Pediatr Nephrol 19:193–198

    Article  PubMed  Google Scholar 

  34. Amore A, Coppo R (2002) Immunological basis of inflammation in dialysis. Nephrol Dial Transplant 17(Suppl 8):S16–S24

    Article  Google Scholar 

  35. Oflaz H, Pusuroglu H, Genchallac H, Demirel S, Bugra Z, Sever MS, Yildiz A (2003) Endothelial function is more impaired in hemodialysis patients than renal transplant recipients. Clin Transplant 17:528–533

    Article  PubMed  Google Scholar 

  36. Milliner DS, Zinsmeister AR, Lieberman E, Landing B (1990) Soft tissue calcification in pediatric patients with end-stage renal disease. Kidney Int 38:931–936

    Article  CAS  PubMed  Google Scholar 

  37. Haffner D, Hocher B, Mueller D, Simon K, Konig K, Richter CM, Eggert B, Schwarz J, Godes M, Nissel R, Querfeld U (2005) Systemic cardiovascular disease in uremic rats induced by 1,25(OH)2D3. J Hypertens 23:1067–1075

    Article  CAS  PubMed  Google Scholar 

  38. Mitsnefes MM, Kimball TR, Witt JA, Glascock BJ, Khoury PR, Daniels SR (2004) Abnormal carotid artery structure and function in children and adolescents with successful renal transplantation. Circulation 110:97–101

    Article  PubMed  Google Scholar 

  39. Mitsnefes MM, Kimball TR, Kartal J, Witt SA, Glascock BJ, Khoury PR, Daniels SR (2005) Cardiac and vascular adaptation in pediatric patients with chronic kidney disease: role of calcium-phosphorus metabolism. J Am Soc Nephrol 16:2796–2803

    Article  CAS  PubMed  Google Scholar 

  40. Mitsnefes MM, Schwartz SM, Daniels SR, Kimball TR, Khoury P, Strife CF (2001) Changes in left ventricular mass index in children and adolescents after renal transplantation. Pediatr Transplant 5:279–284

    Article  CAS  PubMed  Google Scholar 

  41. Yildiz A, Oflaz H, Pusuroglu H, Mercanoglu F, Genchallac H, Akkaya V, Ikizler TA, Sever MS (2003) Left ventricular hypertrophy and endothelial dysfunction in chronic hemodialysis patients. Am J Kidney Dis 41:616–623

    Article  PubMed  Google Scholar 

  42. Yildiz A, Memisoglu E, Oflaz H, Yazici H, Pusuroglu H, Akkaya V, Erzengin F, Tepe S (2005) Atherosclerosis and vascular calcification are independent predictors of left ventricular hypertrophy in chronic haemodialysis patients. Nephrol Dial Transplant 20:760–767

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dolli Yafet Aji, MD, for her excellent language and technical assistance. Financial support for this study was obtained from the Turkish Pediatric Association, and statistical analysis was supported by the Turkish Society of Nephrology Istanbul Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Civilibal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Civilibal, M., Caliskan, S., Oflaz, H. et al. Traditional and “new” cardiovascular risk markers and factors in pediatric dialysis patients. Pediatr Nephrol 22, 1021–1029 (2007). https://doi.org/10.1007/s00467-007-0451-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-007-0451-0

Keywords

Navigation