Skip to main content

Use of Multispectral and Hyperspectral Satellite Imagery for Monitoring Waterbodies and Wetlands

  • Chapter
  • First Online:
Southern Iraq's Marshes

Abstract

Timely and accurate change detection (CD) of Earth’s surface features is important for understanding interactions between human and natural phenomena. Remote sensing (RS) as the most important information resource plays a role key in monitoring and assessment of the environment. One of most applications of hyperspectral imagery is CD. The hyperspectral imagery provides more details from CD compared to multispectral images. Wetlands are one of the most influential ecosystems in the natural environment for which it is very difficult to find an alternative. The monitoring wetland and waterbody areas based on RS imagery need special techniques due to some limitations (existence noise and condition atmospheric, need to high training data and threshold selection, and complexity of water body areas). Based on these problems it is necessary to CD methods to minimize problems so, this research proposed a framework for hyperspectral CD methods on wetland and water body areas. The proposed method is based on incorporating chronochrome, Z-score analysis, Otsu algorithm, SImplex via Split Augmented Lagrangian (SISAL), Harsanyi–Farrand–Chang (HFC), Pearson correlation coefficient (PCC), and support vector machine (SVM) to detect changes using hyperspectral imagery. The proposed method is applied in four main steps: (1) produce a training data for tuning SVM and kernel parameters, (2) predicted change areas based on a chronochrome algorithm and binary change map obtained using SVM classifier, (3) the amplitude of changes is created by Z-Score analysis and binary change mask, and (4) the multiple change map is produced based on the estimation of number and extraction of endmembers and similarity measure. To evaluate the performance of the proposed method, multi-temporal hyperspectral Hyperion images for Shadegan Wetland were used. The results show high accuracy and low false alarms rate of proposed method methods with an overall accuracy of more than 96%, kappa coefficient of more than 0.82. Besides, the proposed method can provide ‘multiple changes’ as well as the magnitude of the extracted changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Operational Land Imager.

  2. 2.

    Multispectral Scanner System.

  3. 3.

    Enhanced Thematic Mapper.

  4. 4.

    Thematic Mapper.

  5. 5.

    Thermal Infrared Sensor.

  6. 6.

    Enhanced Thematic Mapper Plus.

  7. 7.

    Advanced Land Observation Satellite.

  8. 8.

    Advanced Visible and Near Infrared Radiometer type 2.

  9. 9.

    Phased Array type L-band Synthetic Aperture Radar.

  10. 10.

    Iterative Self-Organizing Data Analysis Techniques.

  11. 11.

    Environmental Mapping and Analysis Program.

  12. 12.

    PRecursore IperSpettrale della Missione Applicativa.

  13. 13.

    Hyperspectral Infrared Imager.

  14. 14.

    Pearson correlation coefficient.

  15. 15.

    Simplex identification via split augmented Lagrangian.

  16. 16.

    Harsanyi–Farrand–Chang.

  17. 17.

    Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes.

References

  • Adar S, Notesco G, Brook A, Livne I, Rojik P, Kopackova V et al (2011, October) Change detection over Sokolov open-pit mining area, Czech Republic, using multi-temporal HyMAP data (2009–2010). In: Image and signal processing for remote sensing XVII, vol 8180. International Society for Optics and Photonics, p 81800T

    Google Scholar 

  • Adar S, Shkolnisky Y, Dor EB (2012, July) New approach for spectral change detection assessment using multistrip airborne hyperspectral data. In: Geoscience and remote sensing symposium (IGARSS), 2012 IEEE International. IEEE, pp 4966–4969

    Google Scholar 

  • Ahlqvist O (2008) Extending post-classification change detection using semantic similarity metrics to overcome class heterogeneity: a study of 1992 and 2001 US National Land Cover Database changes. Remote Sens Environ 112(3):1226–1241

    Article  Google Scholar 

  • Barrett EC (2013) Introduction to environmental remote sensing. Routledge

    Google Scholar 

  • Bioucas-Dias JM (2009, August) A variable splitting augmented Lagrangian approach to linear spectral unmixing. In: Hyperspectral image and signal processing: evolution in remote sensing, 2009. WHISPERS’09. First workshop on. IEEE, pp 1–4

    Google Scholar 

  • Bovolo F, Bruzzone L (2015) The time variable in data fusion: a change detection perspective. IEEE Geosci Remote Sens Mag 3(3):8–26

    Article  Google Scholar 

  • Bovolo F, Marchesi S, Bruzzone L (2012) A framework for automatic and unsupervised detection of multiple changes in multitemporal images. IEEE Trans Geosci Remote Sens 50(6):2196–2212

    Article  Google Scholar 

  • Castellana L, D’Addabbo A, Pasquariello G (2007) A composed supervised/unsupervised approach to improve change detection from remote sensing. Pattern Recogn Lett 28(4):405–413

    Article  Google Scholar 

  • Chan KKY, Xu B (2013) Perspective on remote sensing change detection of Poyang Lake wetland. Ann GIS 19(4):231–243

    Article  Google Scholar 

  • Chang CI, Du Q (2004) Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans Geosci Remote Sens 42(3):608–619

    Article  Google Scholar 

  • Cheadle C, Cho-Chung YS, Becker KG, Vawter MP (2003) Application of z-score transformation to Affymetrix data. Appl Bioinforma 2(4):209–217

    Google Scholar 

  • Datt B, McVicar TR, Van Niel TG, Jupp DL, Pearlman JS (2003) Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes. IEEE Trans Geosci Remote Sens 41(6):1246–1259

    Article  Google Scholar 

  • Dronova I, Gong P, Wang L (2011) Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China. Remote Sens Environ 115(12):3220–3236

    Article  Google Scholar 

  • Eismann MT, Meola J, Hardie RC (2008) Hyperspectral change detection in the presence of diurnal and seasonal variations. IEEE Trans Geosci Remote Sens 46(1):237–249

    Article  Google Scholar 

  • Franklin SE, Ahmed OS, Wulder MA, White JC, Hermosilla T, Coops NC (2015) Large area mapping of annual land cover dynamics using multitemporal change detection and classification of Landsat time series data. Can J Remote Sens 41(4):293–314

    Article  Google Scholar 

  • Fröjse L (2011) Multitemporal satellite images for urban change detection

    Google Scholar 

  • Gaspar P, Carbonell J, Oliveira JL (2012) On the parameter optimization of Support Vector Machines for binary classification. J Integr Bioinform 9(3):33–43

    Article  Google Scholar 

  • George R, Padalia H, Kushwaha SPS (2014) Forest tree species discrimination in western Himalaya using EO-1 Hyperion. Int J Appl Earth Obs Geoinf 28:140–149

    Google Scholar 

  • Ghobadi Y, Pradhan B, Shafri HZ, bin Ahmad N, Kabiri K (2015) Spatio-temporal remotely sensed data for analysis of the shrinkage and shifting in the Al Hawizeh wetland. Environ Monit Assess 187(1):1–17. https://doi.org/10.1007/s10661-014-4156-0

    Article  Google Scholar 

  • Ghosh A, Mishra NS, Ghosh S (2011) Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Information Sciences 181:699–715. https://doi.org/10.1016/j.ins.2010.10.016

  • Gibbes C, Southworth J, Keys E (2009) Wetland conservation: change and fragmentation in Trinidad’s protected areas. Geoforum 40(1):91–104

    Article  Google Scholar 

  • Gómez C, White JC, Wulder MA (2016) Optical remotely sensed time series data for land cover classification: a review. ISPRS J Photogramm Remote Sens 116:55–72

    Article  Google Scholar 

  • Goodenough DG, Dyk A, Niemann KO, Pearlman JS, Chen H, Han T et al (2003) Processing Hyperion and ALI for forest classification. IEEE Trans Geosci Remote Sens 41(6):1321–1331. https://doi.org/10.1109/TGRS.2003.813214

    Article  Google Scholar 

  • Gu B, Sheng VS, Tay KY, Romano W, Li S (2017) Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM. IEEE Trans Pattern Anal Mach Intell 39(6):1103–1121

    Article  Google Scholar 

  • Gunawardena A, Fernando T, Takeuchi W, Wickramasinghe CH, Samarakoon L (2014) Identification, evaluation and change detection of highly sensitive wetlands in South-Eastern Sri Lanka using ALOS (AVNIR2, PALSAR) and Landsat ETM+ data. In: IOP conference series: earth and environmental science, vol 20. IOP Publishing, p 012050

    Google Scholar 

  • Hasanlou M, Samadzadegan F, Homayouni S (2015) SVM-based hyperspectral image classification using intrinsic dimension. Arab J Geosci 8(1):477–487

    Article  Google Scholar 

  • Hegazy IR, Kaloop MR (2015) Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. Int J Sustain Built Environ 4(1):117–124

    Google Scholar 

  • Huang S, Ramirez C, Kennedy K, Mallory J, Wang J, Chu C (2017) Updating land cover automatically based on change detection using satellite images: case study of national forests in Southern California. GISci Remote Sens:1–20

    Google Scholar 

  • Hughes ML, McDowell PF, Marcus WA (2006) Accuracy assessment of georectified aerial photographs: implications for measuring lateral channel movement in a GIS. Geomorphology 74(1–4):1–16

    Article  Google Scholar 

  • Hussain M, Chen D, Cheng A, Wei H, Stanley D (2013) Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens 80:91–106

    Article  Google Scholar 

  • Jafari R, Lewis MM (2012) Arid land characterisation with EO-1 Hyperion hyperspectral data. Int J Appl Earth Obs Geoinf 19:298–307

    Google Scholar 

  • Jiang F, Qi S, Liao F, Ding M, Wang Y (2014) Vulnerability of Siberian crane habitat to water level in Poyang Lake wetland, China. GISci Remote Sens 51(6):662–676

    Article  Google Scholar 

  • Kayastha N, Thomas V, Galbraith J, Banskota A (2012) Monitoring wetland change using inter-annual landsat time-series data. Wetlands 32(6):1149–1162

    Article  Google Scholar 

  • Keramitsoglou I, Stratoulias D, Fitoka E, Kontoes C, Sifakis N (2015) A transferability study of the kernel-based reclassification algorithm for habitat delineation. Int J Appl Earth Obs Geoinf 37:38–47

    Google Scholar 

  • Keshava N (2003) A survey of spectral unmixing algorithms. Lincoln Lab J 14(1):55–78

    Google Scholar 

  • Khurshid KS, Staenz K, Sun L, Neville R, White HP, Bannari A, Champagne CM et al (2006) Preprocessing of EO-1 Hyperion data. Can J Remote Sens 32(2):84–97

    Article  Google Scholar 

  • Kumar L, Sinha P (2014) Mapping salt-marsh land-cover vegetation using high-spatial and hyperspectral satellite data to assist wetland inventory. GISc Remote Sens 51(5):483–497

    Article  Google Scholar 

  • Lee S (2011) Detecting wetland change through supervised classification of Landsat Satellite Imagery within the Tunkwa Watershed of British Columbia, Canada. Retrieved January 10, 2017, from http://www.diva-portal.org/smash/record.jsf?pid=diva2:681571

  • Li H, Zhang D, Zhang Y, Xu Y (2008) Research of image preprocessing methods for EO-1 Hyperion hyperspectral data in tidal flat area. Geoinformatics:71471G–71471G

    Google Scholar 

  • Liu S (2015) Advanced techniques for automatic change detection in multitemporal hyperspectral images. University of Trento. Retrieved January 10, 2017, from http://eprints-phd.biblio.unitn.it/1393/

  • Liu Y, Parhi KK (2016) Computing RBF kernel for SVM classification using stochastic logic. In: Signal Processing Systems (SiPS), 2016 IEEE International Workshop on. IEEE, pp 327–332

    Google Scholar 

  • Lu D, Moran E, Hetrick S, Li G (2011) Land-use and land-cover change detection. In: Advances in environmental remote sensing sensors, algorithms, and applications. CRC Press Taylor & Francis Group, New York, pp 273–290

    Google Scholar 

  • Mabwoga SO, Thukral AK (2014) Characterization of change in the Harike wetland, a Ramsar site in India, using landsat satellite data. Springerplus 3(1):576

    Article  Google Scholar 

  • McCarthy MJ, Merton EJ, Muller-Karger FE (2015) Improved coastal wetland mapping using very-high 2-meter spatial resolution imagery. Int J Appl Earth Obs Geoinf 40:11–18

    Google Scholar 

  • Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790

    Article  Google Scholar 

  • Mereta ST, Boets P, Bayih AA, Malu A, Ephrem Z, Sisay A, Endale H et al (2012) Analysis of environmental factors determining the abundance and diversity of macroinvertebrate taxa in natural wetlands of Southwest Ethiopia. Eco Inform 7(1):52–61

    Article  Google Scholar 

  • Mousazadeh R, Ghaffarzadeh H, Nouri J, Gharagozlou A, Farahpour M (2015) Land use change detection and impact assessment in Anzali international coastal wetland using multi-temporal satellite images. Environ Monit Assess 187(12):1–11

    Article  Google Scholar 

  • Ng H-F (2006) Automatic thresholding for defect detection. Pattern Recogn Lett 27(14):1644–1649

    Article  Google Scholar 

  • Nielsen AA (2007) The regularized iteratively reweighted MAD method for change detection in multi-and hyperspectral data. IEEE Trans Image Process 16(2):463–478

    Article  Google Scholar 

  • Nielsena AA, Müllerb A (2003) Change detection by the MAD method in hyperspectral image data. Retrieved May 9, 2017, from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.608.8367

  • Omo-Irabor OO (2016) A comparative study of image classification algorithms for landscape assessment of the Niger Delta Region. J Geogr Inf Syst 8(02):163

    Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  • Pacifici F (2007) Change detection algorithms: State of the art. URL: http://www.disp.uniroma2.it/earth_observation/pdf/CD-Algorithms.pdf. Accessed 4 Nov 2011

  • Parente M, Plaza A (2010) Survey of geometric and statistical unmixing algorithms for hyperspectral images. In: Hyperspectral image and signal processing: evolution in remote sensing (WHISPERS), 2010 2nd workshop on. IEEE, pp 1–4

    Google Scholar 

  • Pieper M, Manolakis D, Cooley T, Brueggeman M, Weisner A, Jacobson J (2015) New insights and practical considerations in hyperspectral change detection. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, pp 4161–4164

    Google Scholar 

  • Rapinel S, Hubert-Moy L, Clément B (2015) Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping. Int J Appl Earth Obs Geoinf 37:56–64

    Google Scholar 

  • Ring M, Eskofier BM (2016) An approximation of the Gaussian RBF kernel for efficient classification with SVMs. Pattern Recogn Lett 84:107–113

    Article  Google Scholar 

  • Romshoo SA, Rashid I (2014) Assessing the impacts of changing land cover and climate on Hokersar wetland in Indian Himalayas. Arab J Geosci 7(1):143–160

    Article  Google Scholar 

  • Sakthivel NR, Saravanamurugan S, Nair BB, Elangovan M, Sugumaran V (2016) Effect of kernel function in support vector machine for the fault diagnosis of pump. J Eng Sci Technol 11(6):826–838

    Google Scholar 

  • Samadzadegan F, Hasani H, Schenk T (2012) Simultaneous feature selection and SVM parameter determination in classification of hyperspectral imagery using ant colony optimization. Can J Remote Sens 38(2):139–156

    Article  Google Scholar 

  • Schaum A, Stocker A (1998) Long-interval chronochrome target detection. In: Proc. 1997 International symposium on spectral sensing research, pp 1760–1770

    Google Scholar 

  • Scheffler D, Karrasch P (2013) Preprocessing of hyperspectral images: a comparative study of destriping algorithms for EO1-hyperion. In: Image and signal processing for remote sensing XIX, vol 8892. International Society for Optics and Photonics, p 88920H

    Google Scholar 

  • Seydi ST, Hasanlou M (2016) Novel wetland and water body change detection using multitemporal hyperspectral imagery. In: Presented at the International Water Conference 2016 on Water Resources in Arid Areas. Springer, Oman

    Google Scholar 

  • Seydi ST, Hasanlou M (2017) A new land-cover match-based change detection for hyperspectral imagery. Eur J Remote Sens 50(1):517–533

    Article  Google Scholar 

  • Seydi ST, Hasanlou M (2018) Sensitivity analysis of pansharpening in hyperspectral change detection. Applied Geomatics:1–11

    Google Scholar 

  • Shah-Hosseini R, Homayouni S, Safari A (2015) A hybrid kernel-based change detection method for remotely sensed data in a similarity space. Remote Sens 7(10):12829–12858

    Article  Google Scholar 

  • Sica YV, Quintana RD, Radeloff VC, Gavier-Pizarro GI (2016) Wetland loss due to land use change in the Lower Paraná River Delta, Argentina. Sci Total Environ 568:967–978

    Article  Google Scholar 

  • Singh A (1989) Review article digital change detection techniques using remotely-sensed data. Int J Remote Sens 10(6):989–1003

    Article  Google Scholar 

  • Smith R (2012) Introduction to hyperspectral imaging, MicroImages Inc. Mentor, OH. Retrieved from http://www.microimages.com/documentation/Tutorials/hyprspec.pdf

  • Storey EA, Stow DA, Coulter LL, Chen C (2017) Detecting shadows in multi-temporal aerial imagery to support near-real-time change detection. GISci Remote Sens:1–18

    Google Scholar 

  • Taminskasa, J., Petro\liusa R, \Limanauskienėa R, Satkūnasb J, Linkevičienėa R (2013) Prediction of change in wetland habitats by groundwater: case study in Northeast Lithuania. Estonian J Earth Sci 62(2):57ø e72

    Google Scholar 

  • Thonfeld F, Feilhauer H, Braun M, Menz G (2016) Robust Change Vector Analysis (RCVA) for multi-sensor very high resolution optical satellite data. Int J Appl Earth Obs Geoinf 50:131–140

    Google Scholar 

  • Varma S, Simon R (2006) Bias in error estimation when using cross-validation for model selection. BMC Bioinform 7(1):91

    Article  Google Scholar 

  • Vapnik V (2013) The nature of statistical learning theory. Springer, Heidelberg 

    Google Scholar 

  • Vongsy KM (2007). Change detection methods for hyperspectral imagery. Wright State University. Retrieved January 10, 2017, from https://etd.ohiolink.edu/!etd.send_file?accession=wright1184010751&disposition=attachment

  • Vongsy K, Mendenhall MJ, Hanna PM, Kaufman J (2009) Change detection using synthetic hyperspectral imagery. In: Hyperspectral image and signal processing: evolution in remote sensing, 2009. WHISPERS’09. First workshop on. IEEE, pp 1–4. Retrieved May 21, 2017, from http://ieeexplore.ieee.org/abstract/document/5289016/

  • Wang J (2013) Pearson correlation coefficient. In: Encyclopedia of systems biology. Springer, pp 1671–1671. Retrieved January 28, 2017, from http://link.springer.com/content/pdf/10.1007/978-1-4419-9863-7_372.pdf

  • White L, Brisco B, Dabboor M, Schmitt A, Pratt A (2015) A collection of SAR methodologies for monitoring wetlands. Remote Sens 7(6):7615–7645

    Article  Google Scholar 

  • Whiteside TG, Bartolo RE (2015) Use of WorldView-2 time series to establish a wetland monitoring program for potential offsite impacts of mine site rehabilitation. Int J Appl Earth Obs Geoinf 42:24–37

    Google Scholar 

  • Wu C, Zhang L, Du B (2012) Targeted change detection for stacked multi-temporal hyperspectral image. In: Hyperspectral image and signal processing (WHISPERS), 2012 4th workshop on. IEEE, pp 1–4. Retrieved July 31, 2017, from http://ieeexplore.ieee.org/abstract/document/6874282/

  • Wu C, Du B, Zhang L (2013) A subspace-based change detection method for hyperspectral images. IEEE J Sel Top Appl Earth Observ Remote Sens 6(2):815–830

    Article  Google Scholar 

  • Yang Y, Yan Z (2016) Monitoring and Analyzing of Poyang Lake Wetland Land Use Change Based on RS and GIS. In: Geo-informatics in resource management and sustainable ecosystem. Springer, pp 213–221

    Google Scholar 

  • Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME (2005) Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens Environ 98(2):317–328

    Article  Google Scholar 

  • Yuen PW, Richardson M (2010) An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition. Imaging Sci J 58(5):241–253

    Article  Google Scholar 

  • Zanotta DC, Zani H, Shimabukuro YE (2013) Automatic detection of burned areas in wetlands by remote sensing multitemporal images. In: Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International. IEEE, pp 1959–1962

    Google Scholar 

  • Zhao H, Cui B, Zhang H, Fan X, Zhang Z, Lei X (2010) A landscape approach for wetland change detection (1979-2009) in the Pearl River Estuary. Procedia Environ Sci 2:1265–1278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hasanlou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasanlou, M., Seydi, S.T. (2021). Use of Multispectral and Hyperspectral Satellite Imagery for Monitoring Waterbodies and Wetlands. In: Jawad, L.A. (eds) Southern Iraq's Marshes. Coastal Research Library, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-66238-7_9

Download citation

Publish with us

Policies and ethics