Skip to main content

Chemically Modified Enzyme and Biomimetic Catalysts Electrodes

  • Chapter
  • First Online:
Mathematical Modeling of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 9))

  • 406 Accesses

Abstract

The chemically modified enzyme electrodes (CMEEs) and biomimetic catalysts (BC) based electrodes (BCEs) exhibit numerous remarkable properties, such as high sensitivity, specificity and stability. In this chapter mathematical models of several types of these biosensors are considered at stationary and transient conditions. Firstly, the action of CMEEs produced by modifying carbon electrodes with redox active component (mediator) and an enzyme is considered at stationary conditions. Then, the two compartment modeling is applied to the biosensor utilizing an ordered ping-pong scheme of the enzyme catalysed substrate conversion in the presence of the mediator . After that, an approach where two diffusion layers are modeled by one layer by introducing an effective diffusion coefficient is discussed and applied to a model comprising three layers. The final study is dedicated to analysis of biosensors based on biomimetic catalysts utilizing a combination of two kinds of redox interaction—a simple chemical second-order reaction and Michaelis-type redox reaction scheme. By applying these two types of reactions the influence of the physical and the kinetic parameters on the biosensor response is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkire RC, Kolb DM, Lipkowski J, Ross PN (eds) (2009) Chemically modified electrodes. Wiley, Weinheim

    Google Scholar 

  2. Amatore C, Szunerits S, Thouin L, Warkocz JS (2001) The real meaning of Nernst’s steady diffusion layer concept under non-forced hydrodynamic conditions. A simple model based on Levich’s seminal view of convection. J Electroanal Chem 500(1–2), 62–70

    Google Scholar 

  3. Amatore C, Oleinick AI, Svir I (2006) Construction of optimal quasi-conformal mappings for the 2D-numerical simulation of diffusion at microelectrodes. Part 1: Principle of the method and its application to the inlaid disk microelectrode. J Electroanal Chem 597(1):69–76

    Article  Google Scholar 

  4. Antiochia R, Lavagnini I, Magno F (2004) Amperometric mediated carbon nanotube paste biosensor for fructose determination. Anal Lett 37(8):1657–1669

    Article  Google Scholar 

  5. Aris R (1975) The mathematical theory of diffusion and reaction in permeable catalysts: the theory of the steady state. Oxford Studies in Physics, vol 1. Oxford University Press, Oxford

    Google Scholar 

  6. Arshak K, Jafer E, McDonagh D (2007) Modeling and simulation of a wireless microsensor data acquisition system using PCM techniques. Simul Model Pract Th 15(7):764–785

    Article  Google Scholar 

  7. Ašeris V, Baronas R, Kulys J (2009) Numerical modelling of chemically modified enzyme electrodes. In: VK et al. (ed) Proceedings of international conference differential equations and their applications, DETA-2009. Kaunas University of Technology, Kaunas, pp 66–72

    Google Scholar 

  8. Ašeris V, Baronas R, Petrauskas K (2016) Computational modelling of three-layered biosensor based on chemically modified electrode. Comp Appl Math 35(2):405–421

    Article  MathSciNet  MATH  Google Scholar 

  9. Banica FG (2012) Chemical sensors and biosensors: fundamentals and applications. Wiley, Chichester

    Book  Google Scholar 

  10. Baronas R (2017) Nonlinear effects of diffusion limitations on the response and sensitivity of amperometric biosensors. Electrochim Acta 240:399–407

    Article  Google Scholar 

  11. Baronas R, Kulys J (2008) Modelling amperometric biosensors based on chemically modified electrodes. Sensors 8(8):4800–4820

    Article  Google Scholar 

  12. Bartlett PN (2008) Bioelectrochemistry: fundamentals, experimental techniques and applications. Wiley, Chichester

    Book  Google Scholar 

  13. Bartlett P, Pratt K (1995) Theoretical treatment of diffusion and kinetics in amperometric immobilized enzyme electrodes. Part I: Redox mediator entrapped within the film. J Electroanal Chem 397(1–2):61–78

    Article  Google Scholar 

  14. Bisswanger H (2008) Enzyme kinetics: principles and methods, 2nd edn. Wiley-Blackwell, Weinheim

    Book  Google Scholar 

  15. Britz D, Strutwolf J (2016) Digital simulation in electrochemistry. Monographs in Electrochemistry, 4th edn. Springer, Cham

    Google Scholar 

  16. Č enas N, Kulys J (1981) Biocatalytic oxidation of glucose on the conductive charge transfer complexes. Bioelectrochem Bioenerg 8:103–113

    Google Scholar 

  17. Cohen N, Sabhachandani P, Golberg A, Konry T (2015) Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection. Biosens Bioelectron 66:454–460

    Article  Google Scholar 

  18. Corcuera JRD, Cavalieri R, Powers J, Tang J (2004) Amperometric enzyme biosensor optimization using mathematical modeling. In: Proceedings of the 2004 ASAE/csae annual international meeting, p. Paper No. 047030. American Society of Agricultural Engineers, Ottawa, Ontario

    Google Scholar 

  19. Crank J (1975) The mathematics of diffusion. Oxford University Press, London

    MATH  Google Scholar 

  20. Edwards D (2011) Transport effects on surface reaction arrays: biosensor applications. Biosens Bioelectron 230(1):12–20

    MathSciNet  MATH  Google Scholar 

  21. Ferreira LS, Souza MBD, Trierweiler JO, Broxtermann O, Folly, ROM, Hitzmann B (2003) Aspects concerning the use of biosensors for process control: experimental and simulation investigations. Comp Chem Engng 27(8):1165–1173

    Article  Google Scholar 

  22. Forrow N, Bayliff S (2005) A commercial whole blood glucose biosensor with a low sensitivity to hematocrit based on an impregnated porous carbon electrode. Biosens Bioelectron 21(4):3581–3587

    Article  Google Scholar 

  23. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors - sensor principles and architectures. Sensors 8(3):1400–1458

    Article  Google Scholar 

  24. Gutfreund H (1995) Kinetics for the life sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. Hart J, Crew A, Crouch E, Honeychurch K, Pemberton R (2004) Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses. Anal Lett 37(5):789–830

    Article  Google Scholar 

  26. Hu Q, Hu W, Kong J, Zhang X (2015) Ultrasensitive electrochemical DNA biosensor by exploiting hematin as efficient biomimetic catalyst toward in situ metallization. Biosens Bioelectron 63:269–275

    Article  Google Scholar 

  27. Kulys J (1991) Biosensors based on modified electrodes. In: Turner A (ed) Advances in biosensors, vol 1. JAI Press, London Greenwich Connecticut, pp 107–124

    Google Scholar 

  28. Kulys J, Tetianec L (2005) Synergistic substrates determination with biosensors. Biosens Bioelectron 21(1):152–158

    Article  Google Scholar 

  29. Kulys J, Samalius A, Svirmickas G (1980) Electron exchange between the enzyme active center and organic metal. FEBS Lett 114(1):7–10

    Article  Google Scholar 

  30. Laurinavicius V, Kulys J, Gureviciene V, Simonavicius K (1989) Flow through and catheter biosensors with an extended concentration range. Biomed Biochem Acta 48(11–12):905–909

    Google Scholar 

  31. Levich V (1962) Physicochemical hydrodynamics. Prentice-Hall, London

    Google Scholar 

  32. Lyons MEG (2001) Mediated electron transfer at redox active monolayers. Sensors 1(7):215–228

    Article  Google Scholar 

  33. Lyons MEG (2009) Transport and kinetics at carbon nanotube-redox enzyme composite modified electrode biosensors. Int J Electrochem Sci 4(1):77–103

    Google Scholar 

  34. Lyons M, Bannon T, Hinds G, Rebouillat S (1998) Reaction/diffusion with Michaelis-Menten kinetics in electroactive polymer films. Part 2. The transient amperometric response. Analyst 123(10):1947–1959

    Article  Google Scholar 

  35. Lyons M, Murphy J, Rebouillat S (2000) Theoretical analysis of time dependent diffusion, reaction and electromigration in membranes. J Solid State Electrochem 4(8):458–472

    Article  Google Scholar 

  36. Magner E (1998) Trends in electrochemical biosensors. Analyst 123(10), 1967–1970

    Article  Google Scholar 

  37. Mažeikienė R, Niaura G, Malinauskas A (2005) In situ Raman spectroelectrochemical study of electrocatalytic processes at polyaniline modified electrodes: Redox vs. metal-like catalysis. Electrochem Commun 7(10):1021–1026

    Article  Google Scholar 

  38. Mažeikienė R, Niaura G, Malinauskas A (2006) In situ Raman spectroelectrochemical study of electrocatalytic oxidation of ascorbate at polyaniline- and sulfonated polyaniline-modified electrodes. Electrochim Acta 51(26):5761–5766

    Article  Google Scholar 

  39. Mažeikienė R, Niaura G, Malinauskas A (2008) In situ Raman spectroelectrochemical study of redox processes at poly(Toluidine blue) modified electrode. Electrochim Acta 53(26):7736–7743

    Article  Google Scholar 

  40. Mažeikienė R, Balskus K, Eicher-Lorka O, Niaura G, Meškys, R, Malinauskas A (2009) Raman spectroelectrochemical study of electrode processes at Neutral red- and poly(Neutral red) modified electrodes. Vibrat Spectrosc 51(2):238–247

    Article  Google Scholar 

  41. Mažeikienė R, Niaura G, Malinauskas A (2011) Electrocatalytic reduction of hydrogen peroxide at Prussian blue modified electrode: an in situ Raman spectroelectrochemical study. J Electroanal Chem 660(1):140–146

    Article  Google Scholar 

  42. Mello LD, Kubota LT (2002) Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 77(2):237–256

    Article  Google Scholar 

  43. Mizutani F (1999) Application of enzyme-modified electrodes to biosensors. Bunseki Kagaku 48(9):809–822

    Article  Google Scholar 

  44. Murali K, Sonaiyappan B, Lakshmanan R (2019) Modelling of reaction-diffusion process at carbon nanotube-Redox enzyme composite modified electrode biosensor. Chem Phys Let 715:20–28

    Article  Google Scholar 

  45. Murray RW (1980) Chemically modified electrodes. Accts Chem Res 13(5):135–141

    Article  Google Scholar 

  46. Murray R, Goodenough J, Albery W (1468) Modified electrodes: chemically modified electrodes for electrocatalysis. Phil Trans R Soc Lond 302:253–265 (1981)

    Article  Google Scholar 

  47. Naujikas R, Malinauskas A, Ivanauskas F (2007) Modeling of electrocatalytic processes at conducting polymer modified electrodes. J Math Chem 42(4):1069–1084

    Article  MathSciNet  MATH  Google Scholar 

  48. Nernst W (1904) Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z Phys Chem 47(1):52–55

    Google Scholar 

  49. Petrauskas K, Baronas R (2009) Computational modelling of biosensors with an outer perforated membrane. Nonlinear Anal Model Control 14(1):85–102

    Article  MATH  Google Scholar 

  50. Puida M, Malinauskas A, Ivanauskas F (2011) Modeling of electrocatalysis at conducting polymer modified electrodes: nonlinear current-concentration profiles. J Math Chem 49(6):1151–1162

    Article  MathSciNet  MATH  Google Scholar 

  51. Puida M, Malinauskas A, Ivanauskas F (2012) Modeling of electrocatalysis at chemically modified electrodes: a combination of second-order and Michaelis-type chemical kinetics. J Math Chem 50(7):2001–2011

    Article  MathSciNet  MATH  Google Scholar 

  52. Samarskii A (2001) The theory of difference schemes. Marcel Dekker, New York-Basel

    Book  MATH  Google Scholar 

  53. Sapelnikova S, Dock E, Solná R, Skládal P, Ruzgas T, Emnéus, J (2003) Screen-printed multienzyme arrays for use in amperometric batch and flow systems. Anal Bioanal Chem 376(7):1098–1103

    Article  Google Scholar 

  54. Scheller FW, Schubert F (1992) Biosensors. Elsevier Science, Amsterdam

    Google Scholar 

  55. Schulmeister T (1990) Mathematical modelling of the dynamic behaviour of amperometric enzyme electrodes. Sel Electrode Rev 12(2):203–260

    Google Scholar 

  56. Schulmeister T, Pfeiffer D (1193) Mathematical modelling of amperometric enzyme electrodes with perforated membranes. Biosens Bioelectron 8(2):75–79

    Google Scholar 

  57. Svancara I, Vytras K, Barek J, Zima J (2001) Carbon paste electrodes in modern electroanalysis. Crit Rev Anal Chem 31(4):311–345

    Article  Google Scholar 

  58. Takoh K, Ishibashi T, Matsue T, Nishizawa M (2005) Localized chemical stimulation of cellular micropatterns using a porous membrane-based culture substrate. Sens Actuator B Chem 108(1–2):683–687

    Article  Google Scholar 

  59. Tudorache M, Bala C (2007) Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Anal Bioanal Chem 388(3):565–578

    Article  Google Scholar 

  60. Turner APF, Karube I, Wilson GS (eds) (1990) Biosensors: fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

  61. Wang J (2000) Analytical electrochemistry, 2nd edn. Wiley, New-York

    Book  Google Scholar 

  62. Wu X, Detzel C, Wie BV, Haarsma S, Kidwel D (2004) Model-based optimization of a conductive matrix enzyme electrode. Biotechnol Bioeng 88(2):135–260

    Article  Google Scholar 

  63. Yokoyama K, Koide S, Kayanuma Y (2002) Cyclic voltammetric simulation of electrochemically mediated enzyme reaction and elucidation of biosensor behaviors. Anal Bioanal Chem 372(2):248–253

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baronas, R., Ivanauskas, F., Kulys, J. (2021). Chemically Modified Enzyme and Biomimetic Catalysts Electrodes. In: Mathematical Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-65505-1_7

Download citation

Publish with us

Policies and ethics