Skip to main content

Biosensors Utilizing Consecutive and Parallel Substrates Conversion

  • Chapter
  • First Online:
Mathematical Modeling of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 9))

  • 390 Accesses

Abstract

Coupling different enzymes either in sequence or in competition pathway is a way to enhance the range of analyte species accessible to measurement, the selectivity and the sensitivity of biosensors. In this chapter, mathematical models of several types of amperometric multi-enzyme biosensors utilizing consecutive or parallel substrates conversion are modeled and analysed at stationary and transient conditions. A biosensor based on bienzyme electrode with co-immobilized D-glucose oxidase and peroxidase is considered under stationary conditions at excess concentrations of oxygen and ferrocyanide. A trienzyme biosensor utilizing consecutive substrates conversion with three enzymes is modeled at internal diffusion limitation. A biosensor with dual catalase-peroxidase bioelectrode is mathematically modeled by nonlinear reaction–diffusion equations. Finally, multi-enzyme biosensors utilizing parallel and competitive multi-substrate conversion are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akkaya A, Altug C, Pazarlioglu N, Dinckaya E (2009) Determination of 5-aminosalicylic acid by catalase-peroxidase based biosensor. Electroanal 21(16):1805–1810

    Article  Google Scholar 

  2. Andersen M, Hsuanyu Y, Welinder K, Schneider P, Dunford H (1991) Spectral and kinetic properties of oxidized intermediates of Coprinus cinereus peroxidase. Acta Chem Scand 45:1080–1086 (1991)

    Article  Google Scholar 

  3. Aris R (1975) The mathematical theory of diffusion and reaction in permeable catalysts: vol. 1: the theory of the steady state. Oxford studies in physics. Oxford University Press, Oxford

    Google Scholar 

  4. Artursson T, Eklöv T, Lundström I, Mårtensson P, Sjöström M, Holmberg M (2000) Drift correction for gas sensors using multivariate methods. J Chemometr 14(5–6), 711–723 (2000)

    Article  Google Scholar 

  5. Ašeris V, Baronas R, Kulys J (2012) Effects of diffusion limitations on the response of biosensors utilizing parallel substrates conversion. In: Eberhardsteiner J, Böhm H, Rammerstorfer F (eds) Proceedings of the 6th European congress on computational methods in applied sciences and engineering (ECCOMAS 2012). Vienna University of Technology, Vienna, p ID:4814

    Google Scholar 

  6. Ašeris V, Baronas R, Kulys J (2012) Modelling the biosensor utilising parallel substrates conversion. J Electroanal Chem 685:63–71

    Article  Google Scholar 

  7. Ašeris V, Baronas R, Kulys J (2013) Computational modeling of bienzyme biosensor with different initial and boundary conditions. Informatica 24(4):505–521

    Article  Google Scholar 

  8. Banica FG (2012) Chemical sensors and biosensors: fundamentals and applications. Wiley, Chichester

    Book  Google Scholar 

  9. Baronas R, Christensen J, Ivanauskas F, Kulys J (2002) Computer simulation of amperometric biosensor response to mixtures of compounds. Nonlinear Anal Model Control 7(2):3–14

    Article  MATH  Google Scholar 

  10. Baronas R, Ivanauskas F, Maslovskis R, Vaitkus P (2004) An analysis of mixtures using amperometric biosensors and artificial neural networks. J Math Chem 36(3):281–297

    Article  MathSciNet  MATH  Google Scholar 

  11. Baronas R, Ivanauskas F, Maslovskis R, Radavičius M, Vaitkus P (2007) Locally weighted neural networks for an analysis of the biosensor response. Kybernetika 43(1):21–30

    MathSciNet  MATH  Google Scholar 

  12. Baronas R, Ivanauskas F, Kulys J (2010) Mathematical modeling of biosensors. Springer, Dordrecht

    Book  MATH  Google Scholar 

  13. Baronas R, Kulys J, Žilinskas A, Lančinskas A, Baronas D (2013) Optimization of the multianalyte determination with biased biosensor response. Chemometrics Intell Lab Syst 126:108–116

    Article  Google Scholar 

  14. Baronas R, Kulys J, Lančinskas A, Žilinskas A (2014) Effect of diffusion limitations on multianalyte determination from biased biosensor response. Sensors 14(3):4634–4656

    Article  Google Scholar 

  15. Bisswanger H (2008) Enzyme kinetics: principles and methods, 2nd edn. Wiley-Blackwell, Weinheim (2008)

    Google Scholar 

  16. Bosch ME, Sánchez AR, Rojas FS, Ojeda CB (2006) Determination of paracetamol: historical evolution. J Pharm Biomed Anal 42(3):291–321

    Article  Google Scholar 

  17. Britz D, Strutwolf J (2016) Digital simulation in electrochemistry. Monographs in electrochemistry, 4th edn. Springer, Cham (2016)

    Google Scholar 

  18. Britz D, Baronas R, Gaidamauskaitė E, Ivanauskas F (2009) Further comparisons of finite difference schemes for computational modelling of biosensors. Nonlinear Anal Model Control 14(4):419–433

    Article  MathSciNet  MATH  Google Scholar 

  19. Bro R (2000) Multivariate calibration: what is in chemometrics for the analytical chemist? Anal Chim Acta 500(1):185–194

    Google Scholar 

  20. Castillo J, Blöchl A, Dennison S, Schuhmann W, Csöregi E (2005) Glutamate detection from nerve cells using a planar electrodes array integrated in a microtiter plate. Biosens Bioelectron 20(10):2116–2119

    Article  Google Scholar 

  21. Clark L, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45.

    Article  Google Scholar 

  22. Ensafi A, Karimi-Maleh H, Mallakpour S, Hatami M (2011) Simultaneous determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3,4-dihydroxyphenethyl)-3,5- dinitrobenzamide modified multiwall carbon nanotubes paste electrode. Sens Actuator B Chem 155(2):464–472

    Article  Google Scholar 

  23. Gaidamauskaitė E, Baronas R (2007) A comparison of finite difference schemes for computational modelling of biosensors. Nonlinear Anal Model Control 12(3):359–369

    Article  MATH  Google Scholar 

  24. Gajovic N, Warsinke A, Huang T, Schulmeister T, Scheller F (1999) Membrane-covered, rotated disk electrode. Anal Chem 71(21):4657–4662

    Article  Google Scholar 

  25. Gunawardena J (2014) Time-scale separation: Michaelis and Menten’s old idea, still bearing fruit. FEBS J. 281(2):473–488

    Article  Google Scholar 

  26. Gutfreund H (1995) Kinetics for the life sciences. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  27. Hall D, McMullen S (2004) Mathematical techniques in multisensor data fusion, 2nd edn. Artech House, Boston (2004)

    Google Scholar 

  28. Kernevez J (1980) Enzyme mathematics. Studies in mathematics and its applications. Elsevier, Amsterdam (1980)

    Google Scholar 

  29. Kulys J (1981) Analytical systems based on immobilized enzymes. Mokslas, Vilnius

    Google Scholar 

  30. Kulys J (1981) Development of new analytical systems based on biocatalysers. Enzyme Microb Technol 3(4):344–352

    Article  Google Scholar 

  31. Kulys J (1981) The development of new analytical systems based on biocatalysts. Anal Lett 14(6):377–397

    Article  Google Scholar 

  32. Kulys J (2004) Modeling trienzyme biosensor at internal diffusion limitation. Nonlinear Anal Model Control 9(1):139–144

    Article  MATH  Google Scholar 

  33. Kulys J, Baronas R (2006) Modelling of amperometric biosensors in the case of substrate inhibition. Sensors 6(11):1513–1522

    Article  Google Scholar 

  34. Kulys J, Schmid RD (1991) Bienzyme sensors based on chemically modified electrodes. Biosens Bioelectron 6(1):43–48

    Article  Google Scholar 

  35. Kulys J, Sorochinskii V, Vidziunaite R (1986) Transient response of bienzyme electrodes. Biosensors 2(3):135–146

    Article  Google Scholar 

  36. Kulys J, Krikstopaitis K, Ziemys A (2000) Kinetics and thermodynamics of peroxidase- and laccase-catalyzed oxidation of N-substituted phenothiazines and phenoxazines. J Biol Inorg Chem 5:333–340

    Article  Google Scholar 

  37. Kulys J, Bratkovskaja I, Ašeris V, Baronas R (2013) Electrochemical peroxidase-catalase Clark-type biosensor: computed and experimental response. Electroanalysis 25(6):1491–1496

    Article  Google Scholar 

  38. Kwan R, Hon P, Mak W, Law L, Hu J, Renneberg R (2006) Biosensor for rapid determination of 3-hydroxybutyrate using bi-enzyme system. Biosens Bioelectron 21(7):1101–1106

    Article  Google Scholar 

  39. Li B, Shen Y, Li B (2008) Quasi-steady-state laws in enzyme kinetics. J Phys Chem A 112(11):2311–2321

    Article  Google Scholar 

  40. Litvinas L, Baronas R (2015) The influence of the diffusion module to determination of two substrate concentrations by artificial neural network. Comput Sci Technol 3(2):177–186

    Article  Google Scholar 

  41. Llinas J, Ruiz J (1986) Multivariate analysis of chemical data sets with factor methods. In: Vemin G, Chanon M (eds) Computer aids to chemistry. Wiley, New York (1986)

    Google Scholar 

  42. Lobanov AV, Borisov IA, Gordon SH, Greene RV, Leathers TD, Reshetilov AN (2001) Analysis of ethanol-glucose mixtures by two microbial sensors: application of chemometrics and artificial neural networks for data processing. Biosens Bioelectron 16(9–12):1001–1007

    Article  Google Scholar 

  43. MacDougall J, McCabe M (1967) Diffusion coefficient of oxygen through tissues. Nature 215:1173–1174

    Article  Google Scholar 

  44. Mackey D, Killard A, Ambrosi A, Smyth M (2007) Optimizing the ratio of horseradish peroxidase and glucose oxidase on a bienzyme electrode: comparison of a theoretical and experimental approach. Sensor Actuat B-Chem 122(2):395–402

    Article  Google Scholar 

  45. Malkavaara P, Alén R, Kolehmainen E (2000) Chemometrics: an important tool for the modern chemist, an example from wood-processing chemistry. J Chem Inf Comput Sci 40(2):438–441

    Article  Google Scholar 

  46. Martens H, Næs T (1989) Multivariate calibration. Wiley, Chichester

    MATH  Google Scholar 

  47. Mizutani F, Yamanakka T, Tanabe Y, Tsuda K (1985) An enzyme electrode for L-lactate with a chemically amplified response. Anal Chim Acta 177:153–166

    Article  Google Scholar 

  48. Nakamoto T, Hiramatsu H (2002) Study of odor recorder for dynamical change of odor using QCM sensors and neural network. Sensor Actuat B-Chem 85(3):263–269

    Article  Google Scholar 

  49. Pocklington T, Jeffery J (1969) Competition of two substrates for a single enzyme. a simple kinetic theorem exemplified by a hydroxy steroid dehydrogenase reaction. Biochem J 112(3):331–334

    Article  Google Scholar 

  50. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  51. Reder S, Dieterle F, Jansen H, Alcock S, Gauglitz G (2003) Multi-analyte assay for triazines using cross-reactive antibodies and neural networks. Biosens Bioelectron 19(5):447–455

    Article  Google Scholar 

  52. Rodriguez-López J, Ros-Martínez J, Varón R, García-Cánovas F (1992) Calibration of a Clark-type oxygen electrode by oxidation of 4-tert-butylcatechol. Anal Biochem 202(2):356–360

    Article  Google Scholar 

  53. Sadana A, Sadana N (2011) Handbook of biosensors and biosensor kinetics. Elsevier, Amsterdam

    MATH  Google Scholar 

  54. Samarskii A (2001) The theory of difference schemes. Marcel Dekker, New York (2001)

    Google Scholar 

  55. Scheller FW, Schubert F (1992) Biosensors. Elsevier, Amsterdam

    Google Scholar 

  56. Scheller F, Renneberg R, Schubert F (1988) Coupled enzyme reactions in enzyme electrodes using sequence, amplification, competition, and antiinterference principles. In: Mosbach K (ed) Methods in enzymology, vol 137. Academic Press, New-York, pp 29–43

    Google Scholar 

  57. Schulmeister T (1987) Mathematical treatment of concentration profiles and anodic current of amperometric enzyme electrodes with chemically amplified response. Anal Chim Acta 201:305–310

    Article  Google Scholar 

  58. Schulmeister T (1990) Mathematical modelling of the dynamic behaviour of amperometric enzyme electrodes. Sel. Electrode Rev. 12(2):203–260

    Google Scholar 

  59. Schulmeister T, Scheller F (1985) Mathematical description of concentration profiles and anodic currents for amperometric two-enzyme electrodes. Anal Chim Acta 171:111–118

    Article  Google Scholar 

  60. Schulmeister T, Rose J, Scheller F (1997) Mathematical modelling of exponential amplification in membrane-based enzyme sensors. Biosens. Bioelectron. 12(9–10):1021–1030

    Article  Google Scholar 

  61. Segel LA, Slemrod M (1989) The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31(3):446–477

    Article  MathSciNet  MATH  Google Scholar 

  62. Sorochinskii V, Kurganov B (1996) Amperometric biosensors with a laminated distribution of enzymes in their coating. Steady state kinetics. Biosens Bioelectron 11(1–2):45–51

    Article  Google Scholar 

  63. Sorochinskii V, Kurganov B (1996) Steady state kinetics of cyclic conversions of substrate in amperometric bienzyme sensors. Biosens Bioelectron 11(3):225–238

    Article  Google Scholar 

  64. Stefan RI, Bokretsion R, van Staden J, Aboul-Enein H (2003) Simultaneous determination of creatine and creatinine using amperometric biosensors. Talanta 60(6):1223–1228

    Article  Google Scholar 

  65. Suzuki H, Sugama A, Kojima N, Takei F, Ikegami K (1991) A miniature Clark-type oxygen electrode using a polyelectrolyte and its application as a glucose sensor. Biosens Bioelectron 6(5):395–400

    Article  Google Scholar 

  66. Turner APF, Karube I, Wilson GS (eds) (1990) Biosensors: fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

  67. Updike S, Hicks G (1967) The enzyme electrode. Nature 214:986–988

    Article  Google Scholar 

  68. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825

    Article  Google Scholar 

  69. Wang Y, Xu H, Zhang J, Li G (2008) Electrochemical sensors for clinic analysis. Sensors 8(4):2043–2081

    Article  Google Scholar 

  70. Wilson R, Turner A (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7(3):165–185

    Article  Google Scholar 

  71. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design, 2nd edn. Wiley, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baronas, R., Ivanauskas, F., Kulys, J. (2021). Biosensors Utilizing Consecutive and Parallel Substrates Conversion. In: Mathematical Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-65505-1_3

Download citation

Publish with us

Policies and ethics