Skip to main content
Log in

Kinetics and thermodynamics of peroxidase- and laccase-catalyzed oxidation of N-substituted phenothiazines and phenoxazines

  • Original Article
  • Published:
Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Steady-state and single-turnover kinetics for the oxidation of the N-substituted phenothiazines (PTs) and phenoxazines (POs) catalyzed by fungal Coprinus cinereus peroxidase and Polyporus pinsitus laccase were investigated at pH 4–10. In the case of peroxidase, an apparent bimolecular rate constant (expressed as k cat/K m) varied from 1×107M−1s−1to 2.6×108M−1s−1 at pH 7.0. The constants for PO oxidation were higher in comparison to PT. pH dependence revealed two or three ionizable groups with pK a values of 4.9–5.7 and 7.7–9.7 that significantly affected the activity of peroxidase. Single-turnover experiments showed that the limiting step of PT oxidation was reduction of compound II and second-order rate constants were obtained which were consistent with the constants at steady-state conditions. Laccase-catalyzed PT and PO oxidation rates were lower; apparent bimolecular rate constants varied from 1.8×105M−1s−1 to 2.0×107M−1s−1 at pH 5.3. PO constants were higher in comparison to PT, as was the case with peroxidase. The dependence of the apparent bimolecular constants of compound II or copper type 1 reduction, in the case of peroxidase or laccase, respectively, was analyzed in the framework of the Marcus outer-sphere electron-transfer theory. Peroxidase-catalyzed reactions with PT, as well as PO, fitted the same hyperbolic dependence with a maximal oxidation rate of 1.6×108M−1s−1 and a reorganization energy of 0.30 eV. The respective parameters for laccase were 5.0×108M−1s−1 and 0.29 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunford HB, Adeniran AJ (1986) Arch Biochem Biophys 251: 536–542

    Article  CAS  PubMed  Google Scholar 

  2. Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Biochem J 268: 475–480

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Kelder PP, de Mol NJ, Fischer MJE, Janssen LHM (1994) Biochim Biophys Acta 1205: 230–238

    Article  CAS  PubMed  Google Scholar 

  4. Folkes LK, Candeias LP (1997) FEBS Lett 412: 305–308

    Article  CAS  PubMed  Google Scholar 

  5. Candeias LP, Folkes LK, Wardman P (1997) Biochemistry 36: 102–108

    Article  Google Scholar 

  6. Krikstopaitis K, Kulys J, Pedersen AH, Schneider P (1998) Acta Chem Scand 52: 469–474

    Article  CAS  Google Scholar 

  7. Trudeau F, Daigle F, Leech D (1997) Anal Chem 69: 882–886

    Article  CAS  PubMed  Google Scholar 

  8. Li K, Xu F, Eriksson K-EL (1999) Appl Environ Microbiol 65: 2654–2660

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Schneider P, Pedersen AH (1995) Int Pat Appl WO 95/01426; (1995) Chem Abstr

    Google Scholar 

  10. Schneider P, Ebdrup S (1994) Int Pat Appl WO 94/12621; (1994) Chem Abstr

    Google Scholar 

  11. Xu F (1996) Biochemistry 35: 7608–7614

    Article  CAS  PubMed  Google Scholar 

  12. Sakurada J, Sekiguchi R, Sato K, Hosoya T (1990) Biochemistry 29: 4093–4098

    Article  CAS  PubMed  Google Scholar 

  13. Candeias LP, Folkes LK, Wardman P (1997) Biochemistry 36: 7081–7085

    Article  CAS  PubMed  Google Scholar 

  14. Farhangrazi ZS, Copeland BR, Nakayama T, Amachi T, Yamazaki I, Powers LS (1994) Biochemistry 33: 5647–5652

    Article  CAS  PubMed  Google Scholar 

  15. Kulys J, Razumas V, Kazlauskaite J, Marcinkeviciene J, Buch-Rasmussen T, Hansen HE, Bechgaard K (1994) J Mol Catal 91: 407–420

    Article  CAS  Google Scholar 

  16. Goodwin D, Yamazaki Y, Aust SD, Grover TA (1995) Anal Biochem 231: 333–338

    Article  CAS  PubMed  Google Scholar 

  17. Andersen MB, Hsuanyu Y, Welinder KG, Schneider P, Dunford HB (1991) Acta Chem Scand 45: 1080–1086

    Article  CAS  Google Scholar 

  18. Abelskov AK, Smith AT, Rasmussen CB, Dunford HB, Welinder KG (1997) Biochemistry 36: 9453–9463

    Article  CAS  PubMed  Google Scholar 

  19. Fukuyama K, Sato K, Itakura H, Takahashi S, Hosoya TJ (1997) J Biol Chem. 272: 5752–5756

    Article  CAS  PubMed  Google Scholar 

  20. Neri F, Kok D, Miller MA, Smulevich G (1997) Biochemistry 36: 8947–8953

    Article  CAS  PubMed  Google Scholar 

  21. Banci L, Carloni P, Savellini GG (1994) Biochemistry 33: 12356–12366

    Article  CAS  PubMed  Google Scholar 

  22. Patel PK, Mondal MS, Modi S, Behere DV (1997) Biochim Biophys Acta 1339: 79–87

    Article  CAS  PubMed  Google Scholar 

  23. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811: 265–322

    Article  CAS  Google Scholar 

  24. Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) Biochim Biophys Acta 1292: 303–311

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juozas Kulys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulys, J., Krikstopaitis, K. & Ziemys, A. Kinetics and thermodynamics of peroxidase- and laccase-catalyzed oxidation of N-substituted phenothiazines and phenoxazines. JBIC 5, 333–340 (2000). https://doi.org/10.1007/PL00010662

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00010662

Key words

Navigation