Skip to main content

Modeling Biosensors Utilizing Microbial Cells

  • Chapter
  • First Online:
Mathematical Modeling of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 9))

  • 399 Accesses

Abstract

This chapter deals with the field of biosensors in which the biological component consists of microbial cells. Whole-cell biosensors provide an opportunity to elicit functional information for different applications including drug discovery, cell biology, toxicology and ecology. Metabolite and biochemical oxygen demand (BOD) biosensors as special cases of biosensors based on microorganisms are mathematically considered at steady state and transient conditions. This chapter also considers the bacterial self-organization in the fluid cultures of luminous E. coli in a small rounded container as detected by bioluminescence imaging. Assuming that the luminescence in experiments is proportional to the cell density, the three-dimensional pattern formation in a bacterial colony is modeled by the nonlinear reaction–diffusion-chemotaxis equations in which the reaction term for the cells is a logistic (autocatalytic) growth function. The numerical simulation showed that the developed model captures fairly well the sophisticated patterns observed in the experiments. Since the simulation based on three-dimensional model is very time-consuming, the reducing spatial dimensionality for simulating one and two-dimensional spatiotemporal patterns is investigated. The patterns simulated by the models of different dimensionality are compared with each other and with the experimental patterns

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aida M, Tsujikawa T, Efendiev M, Yagi A, Mimura M (2006) Lower estimate of the attractor dimension for a chemotaxis growth system. J London Math Soc 74(2):453–474

    Article  MathSciNet  MATH  Google Scholar 

  2. Ardré M, Dufour D, Rainey PB (2019) Causes and biophysical consequences of cellulose production by Pseudomonas fluorescens SBW25 at the air-liquid interface. J Bacteriol 201(18):e00110–19

    Article  Google Scholar 

  3. Baronas R, Šimkus R (2011) Modeling the bacterial self-organization in a circular container along the contact line as detected by bioluminescence imaging. Nonlinear Anal Model Control 16(3):270–282

    Article  MathSciNet  MATH  Google Scholar 

  4. Baronas R, Ledas Ž, Šimkus R (2012) Computational modeling of self-organization in a liquid phase bacterial bioluminescent biosensor. In: Eberhardsteiner J, Böhm H, Rammerstorfer F (eds.) Proceedings of the 6th European Congress on computational methods in applied sciences and engineering (ECCOMAS 2012), ID: 4815. Vienna University of Technology, Vienna

    Google Scholar 

  5. Baronas R, Ledas Ž, Šimkus R (2012) Modeling and simulation of bacterial self-organization in circular container along contact line as detected by bioluminescence imaging. Int J Adv Syst Meas 5(3-4):154–163

    Google Scholar 

  6. Baronas R, Ledas Ž, Šimkus R (2015) Computational modeling of the bacterial self-organization in a rounded container: The effect of dimensionality. Nonlinear Anal Model Control 20(4):603–620

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben-Jacob E, Cohen I, Levine H (2000) Cooperative self-organization of microorganisms. Adv Phys 49(4):395–554

    Article  Google Scholar 

  8. Bousse L (1996) Whole cell biosensors. Sensors Actuators B Chem 34(1–3):270–275

    Article  Google Scholar 

  9. Brenner M, Levitov L, Budrene E (1998) Physical mechanisms for chemotactic pattern formation by bacteria. Biophys J 74(4):1677–1693

    Article  Google Scholar 

  10. Britz D, Strutwolf J (2016) Digital simulation in electrochemistry, 4 edn. Monographs in electrochemistry. Springer, Cham

    Google Scholar 

  11. Budrene E, Berg H (1995) Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376(6535):49–53

    Article  Google Scholar 

  12. Cates ME, Marenduzzo D, Pagonabarraga I, Tailleur J (2010) Arrested phase separation in reproducing bacteria creates a generic route to pattern formation. PNAS 107(26):11715–11720

    Article  Google Scholar 

  13. Čiegis R, Bugajev A (2012) Numerical approximation of one model of bacterial self-organization. Nonlinear Anal Model Control 17(3):253–270

    Article  MathSciNet  MATH  Google Scholar 

  14. Daunert S, Barrett G, Feliciano J, Shetty R, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100(7):2705–2738

    Article  Google Scholar 

  15. D’Souza S (2001) Microbial biosensors. Biosens Bioelectron 16(6):337–353

    Article  Google Scholar 

  16. Dunstan J, Lee KJ, Hwang Y, Park SF, Goldstein RE (2018) Evaporation-driven convective flows in suspensions of nonmotile bacteria. Phys. Rev. Fluids 3(12):123102

    Google Scholar 

  17. Egbert M, Barandiaran X, Paolo ED (2010) A minimal model of metabolism-based chemotaxis. PLoS Comput Biol 6(12):e1001004

    Article  MathSciNet  Google Scholar 

  18. Ei SI, Izuhara H, Mimura M (2014) Spatio-temporal oscillations in the Keller-Segel system with logistic growth. Physica D 277:1–21

    Article  MathSciNet  MATH  Google Scholar 

  19. Eisenbach M (2004) Chemotaxis. Imperial College Press, London

    Book  Google Scholar 

  20. Hillen T, Painter K (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58(1–2):183–217

    Article  MathSciNet  MATH  Google Scholar 

  21. Hillen T, Zielinski J, Painter K (2013) Merging-emerging systems can describe spatio-temporal patterning in a chemotaxis model. Discret Contin Dyn Syst B 18(10):2513–2536

    MathSciNet  MATH  Google Scholar 

  22. Horstmann D (2003) From 1970 until present: the Keller-Segel model in chemotaxis and its consequences: part I. Jahresberichte DMV 105(3):103–165

    MathSciNet  MATH  Google Scholar 

  23. Huzimura R, Matsuyama T (1999) A mathematical model with a modified logistic approach for singly peaked population processes. Theor Popul Biol 56(3):301–306

    Article  MATH  Google Scholar 

  24. Ivančić F, Sheu TW, Solovchuk M (2019) The free surface effect on a chemotaxis-diffusion-convection coupling system. Comput Methods Appl Mech Engrg 356:387–406

    Article  MathSciNet  MATH  Google Scholar 

  25. Jorjani P, Ozturk S (1999) Effects of cell density and temperature on oxygen consumption rate for different mammalian cell lines. Biotechnol Bioeng 64(3):349–356

    Article  Google Scholar 

  26. Kalachev L, Kelly T, O’Callaghan M, Pokrovskii A, Pokrovskiy A (2011) Analysis of threshold-type behaviour in mathematical models of the intrusion of a novel macroparasite in a host colony. Math Med Biol 28(4):287–333

    Article  MathSciNet  MATH  Google Scholar 

  27. Keller E, Segel L (1971) Model for chemotaxis. J Theor Biol 30(2):225–234

    Article  MATH  Google Scholar 

  28. Kulys J (1981) Development of new analytical systems based on biocatalysers. Enzyme Microb Technol 3(4):344–352

    Article  Google Scholar 

  29. Kulys J, Kadziauskiene K (1978) Bioelectrocatalysis. Lactate-oxidizing electrode. Dokl Akad Nauk SSSR 239:636–639

    Google Scholar 

  30. Kulys J, Kadziauskiene K (1980) Yeast BOD sensor. Biotechnol Bioeng 22:221–226

    Article  Google Scholar 

  31. Kuto K, Osaki K, Sakurai T, Tsujikawa T (2012) Spatial pattern formation in a chemotaxis-diffusion-growth model. Physica D 241(19):1629–1639

    Article  MathSciNet  MATH  Google Scholar 

  32. Ledas Ž, Šimkus R, Baronas R (2019) Computational modelling of self-organization of bacterial population consisting of subpopulations of active and passive cells. J Biol Syst 27(3):365–381

    Article  MATH  Google Scholar 

  33. Li H, Liang C, Chen W, Jin JM, Tang SY, Tao Y (2017) Monitoring in vivo metabolic flux with a designed whole-cell metabolite biosensor of shikimic acid. Biosens Bioelectron 98:457–465

    Article  Google Scholar 

  34. Maini P, Myerscough M, Winters K, Murray J (1991) Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation. Bull Math Biol 53(5):701–719

    Article  MATH  Google Scholar 

  35. Mitchell A, Griffits D (1980) The finite difference methods in partial differential equations. Wiley, New York

    Google Scholar 

  36. Murray JD (2003) Mathematical biology: II. Spatial models and biomedical applications, 3rd edn. Springer, New York

    Book  MATH  Google Scholar 

  37. Myerscough M, Maini P, Painter K (1998) Pattern formation in a generalized chemotactic model. Bull Math Biol 60(1):1–26

    Article  MATH  Google Scholar 

  38. Painter K, Hillen T (2011) Spatio-temporal chaos in a chemotactic model. Physica D 240(4–5):363–375

    Article  MATH  Google Scholar 

  39. Park M, Tsai SL, Chen W (2013) Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors 13(5):5777–5795

    Article  Google Scholar 

  40. Perry N (2005) Experimental validation of a critical domain size in reaction-diffusion systems with Escherichia coli populations. J R Soc Interface 2(4):379–387

    Article  Google Scholar 

  41. Reshetilov A, Arlyapov V, Alferov V, Reshetilova T (2013) BOD biosensors: application of novel technologies and prospects for the development. In: Rinken T (ed.) State of the art in biosensors – environmental and medical applications. InTech, London, pp 57–77

    Google Scholar 

  42. Romanczuk P, Erdmann U, Engel H, Schimansky-Geier L (2008) Beyond the Keller-Segel model. microscopic modeling of bacterial colonies with chemotaxis. Eur Phys J Special Topics 157(1):61–77

    Article  Google Scholar 

  43. Samarskii A (2001) The theory of difference schemes. Marcel Dekker, New York

    Book  MATH  Google Scholar 

  44. Shoji H, Nonomura M, Yamada K (2012) Three-dimensional specific patterns based on the Keller-Segel model. Forma 27(1):19–23

    MathSciNet  Google Scholar 

  45. Šimkus R (2006) Bioluminescent monitoring of turbulent bioconvection. Luminescence 21(2):77–80

    Article  Google Scholar 

  46. Šimkus R, Baronas R (2011) Metabolic self-organization of bioluminescent Escherichia coli. Luminescence 31(1):127–134

    Article  Google Scholar 

  47. Šimkus R, Kirejev V, Meškienė R, Meškys R (2009) Torus generated by Escherichia coli. Exp Fluids 46(2):365–369

    Article  Google Scholar 

  48. Šimkus R, Baronas R, Ledas Ž (2013) A multi-cellular network of metabolically active e. coli as a weak gel of living Janus particles. Soft Matter 9(17):4489–4500

    Article  Google Scholar 

  49. Šimkus R, Meškienė R, Ledas Ž, Baronas R, Meškys R (2016) Microtiter plate tests for segregation of bioluminescent bacteria. Luminescence 31(1):127–134

    Article  Google Scholar 

  50. Šimkus R, Meškienė R, Aučynaitė A, Ledas Ž, Baronas R, Meškys R (2018) Phoretic interactions and oscillations in active suspensions of growing Escherichia coli. R Soc Open Sci 5(5):180008

    Article  Google Scholar 

  51. Stenhammar J, Marenduzzo D, Allen R, Cates M (2014) Phase behaviour of active Brownian particles: the role of dimensionality. Soft Matter 10(10):1489–1499

    Article  Google Scholar 

  52. Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26(5):1788–1799

    Article  Google Scholar 

  53. Tindall M, Maini P, Porter S, Armitage J (2008) Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Bull Math Biol 70(6):1570–1607

    Article  MathSciNet  MATH  Google Scholar 

  54. Tuval I, Cisneros L, Dombrowski C, Wolgemuth CW, Kessler J, Goldstein RE (2005) Bacterial swimming and oxygen transport near contact lines. Proc Natl Acad Sci U S A 102(7):2277–2282

    Article  MATH  Google Scholar 

  55. Tyson R, Lubkin S, Murray J (1999) A minimal mechanism for bacterial pattern formation. Proc R Soc Lond B 266(1416):299–304

    Article  Google Scholar 

  56. Tyson R, Lubkin S, Murray J (1999) Model and analysis of chemotactic bacterial patterns in a liquid medium. J Math Biol 38(4):359–375

    Article  MathSciNet  MATH  Google Scholar 

  57. Tyson R, Stern L, LeVeque R (2000) Fractional step methods applied to a chemotaxis model. J Math Biol 41(5):455–475

    Article  MathSciNet  MATH  Google Scholar 

  58. Winkler M (2010) Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Comm PDEs 35(8):1516–1537

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baronas, R., Ivanauskas, F., Kulys, J. (2021). Modeling Biosensors Utilizing Microbial Cells. In: Mathematical Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-65505-1_12

Download citation

Publish with us

Policies and ethics