Skip to main content

Introduction to Modeling of Biosensors

  • Chapter
  • First Online:
Mathematical Modeling of Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 9))

  • 414 Accesses

Abstract

This chapter introduces mathematical modeling of catalytic biosensors. After a brief tutorial consideration of kinetics of biocatalytic reactions, transducer function of biosensors and a general scheme of biosensor action, a detail mathematical model is then presented for an amperometric biosensor based on a mono-layer of an enzyme immobilized onto the surface of the electrode. The biosensor is modeled by two-component (substrate and product) reaction–diffusion equations containing a nonlinear term related to the Michaelis–Menten kinetics of an enzyme reaction . A few modifications of the mathematical model describing the action of potentiometric, optical and fluorescence biosensors are discussed, too. A special emphasis is placed on the modeling biosensors at steady state and internal or external diffusion limitation with a contribution to the modeling biosensors at non-stationary state at some critical concentrations of the substrate when analytical solution of the governing equations is performed. Using numerical simulation, the influence of the model parameters on the biosensor response is investigated. The simulation of the biosensor operation particularly showed a non-monotonous change of the steady state biosensor current versus the membrane thickness at the various maximal enzymatic rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrés I (2008) Enzyme biocatalysis: principles and applications. Springer, Dordrecht

    Google Scholar 

  2. Aris R (1975) The mathematical theory of diffusion and reaction in permeable catalysts: vol. 1: the theory of the steady state. Oxford studies in physics. Oxford University Press, Oxford

    Google Scholar 

  3. Aris R (1999) Mathematical modeling: a chemical engineer’s perspective. Academic Press, London

    MATH  Google Scholar 

  4. Ašeris V, Baronas R, Petrauskas K (2016) Computational modelling of three-layered biosensor based on chemically modified electrode. Comp Appl Math 35(2):405–421

    Article  MathSciNet  MATH  Google Scholar 

  5. Baldini F, Chester A, Homola J, Martellucci S (2006) Optical chemical sensors. Springer, Amsterdam

    Book  Google Scholar 

  6. Banica FG (2012) Chemical sensors and biosensors: fundamentals and applications. Wiley, Chichester

    Book  Google Scholar 

  7. Bard A, Faulkner L (2001) Electrochemical methods. fundamentals and applications, 2 edn. Wiley, New York

    Google Scholar 

  8. Baronas R (2017) Nonlinear effects of diffusion limitations on the response and sensitivity of amperometric biosensors. Electrochim. Acta 240:399–407

    Article  Google Scholar 

  9. Baronas R, Gaidamauskaitė E, Kulys J (2007) Modeling a peroxidase-based optical biosensor. Sensors 7(11):2722–2740

    Article  Google Scholar 

  10. Baronas R, Ivanauskas F, Kaunietis I, Laurinavicius V (2006) Mathematical modeling of plate-gap biosensors with an outer porous membrane. Sensors 6(7):727–745

    Article  Google Scholar 

  11. Baronas R, Ivanauskas F, Kulys J (2002) Modelling dynamics of amperometric biosensors in batch and flow injection analysis. J Math Chem 32(2):225–237

    Article  MathSciNet  MATH  Google Scholar 

  12. Baronas R, Ivanauskas F, Kulys J (2003) The influence of the enzyme membrane thickness on the response of amperometric biosensors. Sensors 3(7):248–262

    Article  MATH  Google Scholar 

  13. Baronas R, Ivanauskas F, Kulys J (2007) Computational modelling of the behaviour of potentiometric membrane biosensors. J Math Chem 42(3):321–336

    Article  MathSciNet  MATH  Google Scholar 

  14. Baronas R, Kulys J (2014) Modeling and simulation of biosensors. In: Kreysa G, Ota K, Savinell R (eds) Encyclopedia of applied electrochemistry. Springer, New York, pp 1304–1309

    Chapter  Google Scholar 

  15. Bartlett P, Birkin P, Wallace E (1997) Oxidation of β-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes. J Chem Soc Faraday Trans 93(10):1951–1960 (1997)

    Article  Google Scholar 

  16. Bartlett P, Pratt K (1995) Theoretical treatment of diffusion and kinetics in amperometric immobilized enzyme electrodes. Part I: Redox mediator entrapped within the film. J Electroanal Chem 397(1–2):61–78

    Article  Google Scholar 

  17. Bartlett P, Whitaker R (1987) Electrochemical imobilisation of enzymes: part 1. Theory. J Electroanal Chem 224:27–35

    Article  Google Scholar 

  18. Bartlett PN (2008) Bioelectrochemistry: fundamentals, experimental techniques and applications. Wiley, Chichester

    Book  Google Scholar 

  19. Bieniasz L (2017) A specialised cyclic reduction algorithm for linear algebraic equation systems with quasi-tridiagonal matrices. J Math Chem 55(9):1793–1807

    Article  MathSciNet  MATH  Google Scholar 

  20. Bieniasz L, Britz D (20004) Recent developments in digital simulation of electroanalytical experiments. Pol J Chem 78(9):1195–1219

    Google Scholar 

  21. Bisswanger H (2008) Enzyme kinetics: principles and methods, 2 edn. Wiley-Blackwell, Weinheim

    Book  Google Scholar 

  22. Blaedel W, Kissel T, Boguslaski R (1972) Kinetic behavior of enzymes immobilized in artificial membranes. Anal Chem 44(12):2030–2037

    Article  Google Scholar 

  23. Bosch M, Sánchez A, Rojas F, Ojeda C (2007) Recent development in optical fiber biosensors. Sensors 7(6):797–859

    Article  Google Scholar 

  24. Briggs G, Haldane J (1925) A note on the kinetics of enzyme action. Biochem J 19:338–339

    Article  Google Scholar 

  25. Britz D, Baronas R, Gaidamauskaitė E, Ivanauskas F (2009) Further comparisons of finite difference schemes for computational modelling of biosensors. Nonlinear Anal Model Control 14(4):419–433

    Article  MathSciNet  MATH  Google Scholar 

  26. Britz D, Strutwolf J (2016) Digital simulation in electrochemistry, 4 edn. Monographs in Electrochemistry. Springer, Cham

    Google Scholar 

  27. Bruice T (2006) Computational approaches: Reaction trajectories, structures, and atomic motions. Enzyme reactions and proficiency. Chem Rev 106(8):3119–3139

    Article  Google Scholar 

  28. Buerk D (1995) Biosensors: theory and applications. CRC Press, Lancaster

    Google Scholar 

  29. Carr P, Bowers L (1980) Immobilized enzymes in analytical and clinical chemistry. Wiley, New York

    Google Scholar 

  30. Carr PW (1977) Fourier analysis of the transient response of potentiometric enzyme electrodes. Anal Chem 49(6):799–802

    Article  Google Scholar 

  31. Chaplin M, Bucke C (1990) Enzyme technology. Cambridge University Press, Cambridge

    Google Scholar 

  32. Chaubey A, Malhotra BD (2002) Mediated biosensors. Biosens Bioelectron 17(6):441–456

    Article  Google Scholar 

  33. Choi M (2004) Progress in enzyme-based biosensors using optical transducers. Microchim Acta 148(3–4):107–132

    Article  Google Scholar 

  34. Clark L, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45

    Article  Google Scholar 

  35. Crank J (1975) The mathematics of diffusion. Oxford University Press, London

    MATH  Google Scholar 

  36. de Gracia J, Poch M, Martorell D, Alegret S (1996) Use of mathematical models to describe dynamic behaviour of potentiometric biosensors: comparison of deterministic and empirical approaches to an urea flow-through biosensor. Biosens Bioelectron 11(1–2):53–61

    Article  Google Scholar 

  37. del Barrio M, Cases R, Cebolla V, Hirsch T, de Marcos S, Wilhelm S, Galbán J (2016) A reagentless enzymatic fluorescent biosensor for glucose based on upconverting glasses, as excitation source, and chemically modified glucose oxidase. Talanta 160:586–591

    Article  Google Scholar 

  38. Dixon M, Webb E, Thorne C, Tipton K (1979) Enzymes, 3rd edn. Longman, London

    Google Scholar 

  39. Eggenstein C, Borchardt M, Diekmann C, Grundig B, Dumschat C, Cammann K, Knoll M, Spener F (1999) A disposable biosensor for urea determination in blood based on an ammonium-sensitive transducer. Biosens Bioelectron 14(1):33–41

    Article  Google Scholar 

  40. Eggins B (2002) Chemical sensors and biosensors. Analytical techniques in the Sciences. Wiley, Chichester

    Google Scholar 

  41. Forrow NJ, Sanghera GS, Walters SJ (2002) The influence of structure in the reaction of electrochemically generated ferrocenium derivatives with reduced glucose oxidase. J Chem Soc Dalton Trans 2002(16):3187–3194

    Article  Google Scholar 

  42. Gaidamauskaitė E, Baronas R (2008) Modeling a peroxide-based fluorescent biosensor. In: Proceedings, 22nd European conference on modeling and simulation ECMS 2008. ECMS, Nicosia, pp 152–156

    Google Scholar 

  43. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8(3):1400–1458

    Article  Google Scholar 

  44. Guilbault G (1970) Enzymatic methods of analysis. Pergamon Press, Oxford

    Google Scholar 

  45. Guilbault G (1984) Analytical uses of immobilized enzymes. Marcel Dekker, New York

    Google Scholar 

  46. Gutfreund H (1995) Kinetics for the life sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  47. Habermüller K, Mosbach M, Schuhmann W (2000) Electron-transfer mechanisms in amperometric biosensors. Fresenius J Anal Chem 366(6):560–568

    Google Scholar 

  48. Harsanyi G (2000) Sensors in biomedical applications: fundamentals, technology and applications. CRC Press, New York

    Book  Google Scholar 

  49. Henri V (1902) Theorie generale de l’action de quelques diastases. Compt Rend Hebd Acad Sci Paris 135(1):916–919

    Google Scholar 

  50. Ivanauskas F, Kaunietis I, Laurinavičius V, Razumienė J, Šimkus R (2008) Apparent Michaelis constant of the enzyme modified porous electrode. J Math Chem 43(4):1516–1526

    Article  MathSciNet  MATH  Google Scholar 

  51. Knopf G, Bassi A (2007) Smart biosensor technology. CRC Press, New York

    Google Scholar 

  52. Kohen A, PKlinman J (1999) Hydrogen tunneling in biology. Chem Biol 6(7):R191–R198

    Article  Google Scholar 

  53. Kulys J (1981) Analytical systems based on immobilized enzymes. Mokslas, Vilnius

    Google Scholar 

  54. Kulys J (1981) The development of new analytical systems based on biocatalysts. Anal Lett 14(6):377–397

    Article  Google Scholar 

  55. Kulys J (2005) Kinetics of biocatalytical synergistic reactions. Nonlinear Anal Model Control 10(3):223–233

    Article  MathSciNet  MATH  Google Scholar 

  56. Kulys J, Krikstopaitis K, Ziemys A (2000) Kinetics and thermodynamics of peroxidase- and laccase-catalyzed oxidation of N-substituted phenothiazines and phenoxazines. J Biol Inorg Chem 5:333–340

    Article  Google Scholar 

  57. Kulys J, Razumas V (1986) Bioamperometry. Mokslas, Vilnius

    Google Scholar 

  58. Kulys J., Čenas N (1983) Oxidation of glucose oxidase from Penicillium vitale by one- and two-electron acceptors. Biochim Biophys Acta 744(1):57–63

    Article  Google Scholar 

  59. Leatherbarrow RJ, Edwards PR (1999) Analysis of molecular recognition using optical biosensors. Curr Opin Chem Biol 3(5):544–547

    Article  Google Scholar 

  60. Ligler F, Taitt C (2002) Optical biosensors: present and future. Elsevier Science, Amsterdam

    Google Scholar 

  61. Magner E (1998) Trends in electrochemical biosensors. Analyst 123:1967–1970

    Article  Google Scholar 

  62. Malhotra BD, Pandey CM (2017) Biosensors: fundamentals and applications. Smithers Rapra, Shawbury

    Google Scholar 

  63. Marti S, Roca M, Andres J, Moliner V, Silla E, Tunon I, Bertran J (2004) Theoretical insights in enzyme catalysis. Chem Soc Rev 33(2):98–107

    Article  Google Scholar 

  64. Mell L, Maloy T (1975) A model for the amperometric enzyme electrode obtained through digital simulation and applied to the immobilized glucose oxidase system. Anal Chem 47(2):299–307

    Article  Google Scholar 

  65. Mell L, Maloy T (1976) Amperometric response enhancement of the immobilized glucose oxidase enzyme electrode. Anal Chem 48(11): 1597–1601

    Article  Google Scholar 

  66. Merino S, Grinfeld M, McKee S (1998) A degenerate reaction diffusion system modeling an optical biosensor. Z Angew Math Phys 49(1):46–85

    Article  MathSciNet  MATH  Google Scholar 

  67. Michaelis L, Menten M (1913) Die kinetik der invertinwirkung. Biochem Z 49

    Google Scholar 

  68. Morf WE, van der Wal PD, Pretsch E, de Rooij NF (2011) Theoretical treatment and numerical simulation of potentiometric and amperometric enzyme electrodes and of enzyme reactors. Part 2: time-dependent concentration profiles, fluxes, and responses. J Electroanal Chem 657(1–2):13–22

    Article  Google Scholar 

  69. Nernst W (1904) Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Z Phys Chem 47(1):52–55

    Google Scholar 

  70. Olea D, Viratelle O, Faure C (2008) Polypyrrole-glucose oxidase biosensor: effect of enzyme encapsulation in multilamellar vesicles on analytical properties. Biosens Bioelectron 23(6):788–794

    Article  Google Scholar 

  71. Ă–zisik MN (1980) Heat conduction. Wiley, New York

    Google Scholar 

  72. Pickup J, Thévenot D (1993) European achievements in glucose sensor research. In: Turner A (ed) Advances in biosensors, Supplement 1. JAI Press, London, pp 201–225

    Google Scholar 

  73. Rickus J (2005) Impact of coenzyme regeneration on the performance of an enzyme based optical biosensor: a computational study. Biosens. Bioelectron. 21(6):965–972

    Article  Google Scholar 

  74. Rodriguez-Mozaz S, Marco M, de Alda M, Barcelo D (2004) Biosensors for environmental applications: future development trends. Pure Appl Chem 76(4):723–752

    Article  Google Scholar 

  75. Rogers KR (1995) Biosensors for environmental applications. Biosens Bioelectron 10(6–7):533–541

    Article  Google Scholar 

  76. Ruzicka J, Hansen E (1988) Flow injection analysis. Wiley, New York

    Google Scholar 

  77. Sadana A, Sadana N (2011) Handbook of biosensors and biosensor kinetics. Elsevier, Amsterdam

    MATH  Google Scholar 

  78. Scheller FW, Schubert F (1992) Biosensors. Elsevier Science, Amsterdam

    Google Scholar 

  79. Schulmeister T (1990) Mathematical modelling of the dynamic behaviour of amperometric enzyme electrodes. Sel Electrode Rev 12(2):203–260

    Google Scholar 

  80. Schulmeister T, Scheller F (1985) Mathematical treatment of concentration profiles and anodic current for amperometric enzyme electrodes. Anal Chim Acta 170:279–285

    Article  Google Scholar 

  81. Sorochinskii V, Kurganov B (1997) Theoretical principles of the application of potentiometric enzyme electrodes. Appl Biochem Micro 33(2):116–124

    Google Scholar 

  82. Spichiger-Kelle UE (1998) Chemical sensors and biosensors for medical and biological applications. Wiley-VCH, New York

    Book  Google Scholar 

  83. Turner APF, Karube I, Wilson GS (eds) Biosensors: fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

  84. Updike S, Hicks G (1967) The enzyme electrode. Nature 214:986–988

    Article  Google Scholar 

  85. Vo-Dinh T (2003) Biomedical photonics handbook. CRC Press, New York

    Book  Google Scholar 

  86. Štikonienė O, Ivanauskas F, Laurinavičius V (2010) The influence of external factors on the operational stability of the biosensor response. Talanta 81(4–5);1245–1249

    Article  Google Scholar 

  87. Wilson R, Turner A (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7(3):165–185

    Article  Google Scholar 

  88. Wollenberger U, Lisdat F, Scheller F (1997) Frontiers in biosensorics, vol 2. Practical applications. Birkhauser, Basel

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baronas, R., Ivanauskas, F., Kulys, J. (2021). Introduction to Modeling of Biosensors. In: Mathematical Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-65505-1_1

Download citation

Publish with us

Policies and ethics