Skip to main content

Digital Orthodontics

  • Chapter
  • First Online:
Digitization in Dentistry

Abstract

Digital technology has already become indispensable to modern dentistry, and the use of 3D technology in orthodontics has increased in recent years. The developments and introduction of intraoral and facial scanners, digital radiology, and cone-beam computed tomography (CBCT) have transformed diagnosis and treatment planning from a traditional two-dimensional (2D) approach into an advanced three-dimensional (3D) technique.

A more recent breakthrough is the advancement of computer-aided design and computer-aided manufacturing (CAD/CAM) and 3D printing technology that is utilized to design and create “personalized” orthodontic appliances. Such systems not only shorten treatment time, making cases more predictable and less labor-intensive, but allow doctors and patients to preview virtual results before treatment begins, thus facilitating communication, understanding, cooperation, and case acceptance.

This chapter discusses the latest technologies used in orthodontics such as imaging, scanners, 3D printed and custom-made appliances, apps, and tele-orthodontics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tadinada A, Schneider S, Yadav S. Role of cone beam computed tomography in contemporary orthodontics. Semin Orthod. [Internet. 2018;24(4):407–15. https://doi.org/10.1053/j.sodo.2018.10.005.

    Article  Google Scholar 

  2. Ghoneima A, Allam E, Kula K, Windsor L. Three-dimensional imaging and software advances in orthodontics. In: Orthod Basic Asp Clin Considerations. 2012.

    Google Scholar 

  3. Tarraf NE, Ali DM. Present and the future of digital orthodontics✰. Semin Orthod. [Internet. 2018;24(4):376–85. https://doi.org/10.1053/j.sodo.2018.10.002.

    Article  Google Scholar 

  4. Maino BG, Paoletto E, Lombardo L, Siciliani GA. Three-dimensional digital insertion guide for palatal Miniscrew placement. J Clin Orthod. 2016;50(1):12–22.

    PubMed  Google Scholar 

  5. Almulla S, Premjani P, Vaid NR, Fadia DF, Ferguson DJ. Evaluating the accuracy of facial models obtained from volume wrapping: 2D images on CBCT versus 3D on CBCT. Semin Orthod. 2018;24(4):443–50. [Internet]. https://doi.org/10.1053/j.sodo.2018.10.008.

    Article  Google Scholar 

  6. Starkey NE. The three-dimensional era of orthodontics: The past, present, and future of digital technology.

    Google Scholar 

  7. Starkey NE. The three-dimensional era of orthodontics: the past, present, and future of digital technology. University of Southern California Digital Library (USC.DL) 2017.

    Google Scholar 

  8. Cabral Correia GD, Lima Habib FA, Vogel CJ. Tooth-size discrepancy: a comparison between manual and digital methods. Dental Press J Orthod. 2014;19(4):107–13.

    Article  Google Scholar 

  9. Kim J, Heo G, Lagravère MO. Accuracy of laser-scanned models compared to plaster models and cone-beam computed tomography. Angle Orthod. 2014;84(3):443–50.

    Article  Google Scholar 

  10. Emilia Taneva, Budi Kusnoto and Carla A. Evans (September 3rd 2015). 3D Scanning, Imaging, and Printing in Orthodontics, Issues in Contemporary Orthodontics, Farid Bourzgui, IntechOpen. https://doi.org/10.5772/60010.

  11. Al Mortadi N, Jones Q, Eggbeer D, Lewis J, Williams RJ. Fabrication of a resin appliance with alloy components using digital technology without an analog impression. Am J Orthod Dentofac Orthop. [Internet. 2015;148(5):862–7. https://doi.org/10.1016/j.ajodo.2015.06.014.

    Article  Google Scholar 

  12. Baker SR. The cutting edge. Arch Otolaryngol Neck Surg. 1988;114(6):621.

    Google Scholar 

  13. Kravitz ND, Groth C, Jones PE, Graham JW, Redmond WR. Intraoral digital scanners. J Clin Orthod. 2014;48(6):337–47.

    PubMed  Google Scholar 

  14. Lee RJ, Pham J, Choy M, Weissheimer A, Dougherty HL, Sameshima GT, et al. Monitoring of typodont root movement via crown superimposition of single cone-beam computed tomography and consecutive intraoral scans. Am J Orthod Dentofac Orthop. [Internet. 2014;145(3):399–409. https://doi.org/10.1016/j.ajodo.2013.12.011.

    Article  Google Scholar 

  15. Hull CW. Arcadia, Calif. Apparatus for production of three-dimensional ob- jects by stereolithography, U.S. Patent No. 4,575,330, March 11, 1986. 1984.

    Google Scholar 

  16. Christian G, Kravitz ND, Jones PE, Graham JW, Redmond WR. OVERVIEW three-dimensional printing technology—JCO online. J Clin Orthod. 2014;XLVIII(8):475–85. https://www-jco-online-com.proxy.library.vcu.edu/archive/2014/08/475/

    Google Scholar 

  17. Evans C, Taneva E, Kusnoto B. 3D Scanning, Imaging, and Printing in Orthodontics. In 2015.

    Google Scholar 

  18. Wiechmann D, Rummel V, Thalheim A, Simon JS, Wiechmann L. Customized brackets and archwires for lingual orthodontic treatment. Am J Orthod Dentofac Orthop. 2003;124(5):593–9.

    Article  Google Scholar 

  19. Rummel V, Wiechmann D, Sachdeva RC. Precision finishing in lingual orthodontics. J Clin Orthod. 1999;33(2):101–13.

    PubMed  Google Scholar 

  20. Grauer D, Proffit WR. Accuracy in tooth positioning with a fully customized lingual orthodontic appliance. Am J Orthod Dentofac Orthop. 2011;140(3):433–43.

    Article  Google Scholar 

  21. Awad MG, Ellouze S, Ashley S, Vaid N, Makki L, Ferguson DJ. Accuracy of digital predictions with CAD/CAM labial and lingual appliances: a retrospective cohort study. Semin Orthod. [Internet. 2018;24(4):393–406. https://doi.org/10.1053/j.sodo.2018.10.004.

    Article  Google Scholar 

  22. Gracco A, Tracey S. The insignia system of customized orthodontics. J Clin Orthod. 2011;45(8):442–51.

    PubMed  Google Scholar 

  23. Nguyen T, Jackson T. 3D technologies for precision in orthodontics. Semin Orthod. [Internet. 2018;24(4):386–92. https://doi.org/10.1053/j.sodo.2018.10.003.

    Article  Google Scholar 

  24. Christensen LR, Cope JB. Digital technology for indirect bonding. Semin Orthod. [Internet. 2018;24(4):451–60. https://doi.org/10.1053/j.sodo.2018.10.009.

    Article  Google Scholar 

  25. Weber DJ, Koroluk LD, Phillips C, Nguyen T, Proffit WR. Clinical effectiveness and efficiency of customized vs conventional preadjusted bracket systems. J Clin Orthod. 2013;47(4):261–6.

    PubMed  Google Scholar 

  26. Brown MW, Koroluk L, Ko CC, Zhang K, Chen M, Nguyen T. Effectiveness and efficiency of a CAD/CAM orthodontic bracket system. Am J Orthod Dentofac Orthop. 2015;148(6):1067–74.

    Article  Google Scholar 

  27. Penning EW, Peerlings RHJ, Govers JDM, Rischen RJ, Zinad K, Bronkhorst EM, et al. Orthodontics with customized versus noncustomized appliances: a randomized controlled clinical trial. J Dent Res. 2017;96(13):1498–504.

    Article  Google Scholar 

  28. Sachdeva RC. SureSmile technology in a patient--centered orthodontic practice. J Clin Orthod. 2001;35(4):245–53.

    PubMed  Google Scholar 

  29. Alford TJ, Roberts WE, Hartsfield JK, Eckert GJ, Snyder RJ. Clinical outcomes for patients finished with the SureSmile™ method compared with conventional fixed orthodontic therapy. Angle Orthod. 2011;81(3):383–8.

    Article  Google Scholar 

  30. Larson BE, Vaubel CJ, Grünheid T. Effectiveness of computer-assisted orthodontic treatment technology to achieve predicted outcomes. Angle Orthod. 2013;83(4):557–62.

    Article  Google Scholar 

  31. Christensen LR. Digital workflows in orthodontics. J Clin Orthod. 2018;52(1):34–44.

    PubMed  Google Scholar 

  32. Graf S. Clinical guidelines for direct printed metal orthodontic appliances. Semin Orthod. [Internet. 2018;24(4):461–9. https://doi.org/10.1053/j.sodo.2018.10.010.

    Article  Google Scholar 

  33. Groth C, Kravitz ND, Shirck JM. Incorporating three-dimensional printing in orthodontics. J Clin Orthod. 2018;52(1):28–33.

    PubMed  Google Scholar 

  34. Wolf M, Schumacher P, Jäger F, Wego J, Fritz U, Korbmacher-Steiner H, et al. Novel lingual retainer created using CAD/CAM technology: evaluation of its positioning accuracy. J Orofac Orthop. 2015;76(2):164–74.

    Article  Google Scholar 

  35. Breuning KH. Efficient tooth movement with new technologies for customized treatment. J Clin Orthod. 2011;45(5):257–62.

    PubMed  Google Scholar 

  36. Phatak S, Daokar S. Orthodontic apps: a stairway to the future YR - 2019/4/1. Int J Orthod Rehabil. (2 UL— http://www.orthodrehab.org/article.asp?issn=2349-5243;year=2019;volume=10;issue=2;spage=75;epage=81;aulast=Phatak;t=5):75 OP-81 VO – 10

  37. Gupta G, Vaid NR. The world of orthodontic apps. APOS Trends Orthod. 2017;7:73–9.

    Article  Google Scholar 

  38. Siddiqui NR, Hodges S, Sharif MO. Availability of orthodontic smartphone apps. J Orthod. 2019;46(3):235–41.

    Article  Google Scholar 

  39. Singh P. Orthodontic apps for smartphones. J Orthod. 2013;40(3):249–55.

    Article  Google Scholar 

  40. Pandey A, Mahajan S. Apps in orthodontics: a review. Int J Curr Adv Res. 2018;7

    Google Scholar 

  41. Sayar G, Kilinc DD. Manual tracing versus smartphone application (app) tracing: a comparative study. Acta Odontol Scand. [Internet. 2017;75(8):588–94. https://doi.org/10.1080/00016357.2017.1364420.

    Article  PubMed  Google Scholar 

  42. Hansa I, Semaan SJ, Vaid NR, Ferguson DJ. Remote monitoring and “tele-orthodontics”: concept, scope and applications. Semin Orthod. [Internet. 2018;24(4):470–81. https://doi.org/10.1053/j.sodo.2018.10.011.

    Article  Google Scholar 

  43. John Wiley & Sons, Inc. Monitoring of tooth movement. Hoboken, NJ: John Wiley & Sons, Inc.; 2017. p. 55–63.

    Google Scholar 

  44. Fossati M, Marti P GCS. No title. 2018.; https://www.f6s.com/superpowerme.

    Google Scholar 

  45. Vaid NR. Commoditizing orthodontics: “being as good as your dumbest competitor?”. APOS Trends Orthod. 2016;6:121–2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dalbah, L. (2021). Digital Orthodontics. In: Jain, P., Gupta, M. (eds) Digitization in Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-65169-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65169-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65168-8

  • Online ISBN: 978-3-030-65169-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics