Skip to main content

Antifungal Activities of Curcuminoids and Difluorinated Curcumin Against Clinical Dermatophyte Isolates

  • Chapter
  • First Online:
Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1308))

Abstract

Dermatophytes are a group of fungal agents that can invade humans’ keratinized tissues such as skin, nail, and hair, thereby causing dermatophyte infection (dermatophytosis) or ringworm. Some natural products have been reported to possess fungicidal effects. Hence, the present study investigated the effect of curcuminoids (CUR) and difluorinated curcumin (CDF) against clinical isolates of dermatophytes. CUR and CDF powders were evaluated against dermatophyte species including Trichophyton tonsurans (n = 21), T. mentagrophytes (n = 19), T. interdigitale (n = 18), Microsporum canis (n = 4), T. benhamiae (n = 1), and T. verrucosum (n = 1), based on the CLSI M38-A2 guideline. The minimum inhibitory concentration (MIC) ranges of CUR were 4–16, 8–16, 4–16, 8, 8, and 16 μg/ml for T. tonsurans, T. mentagrophytes, T. interdigitale, M. canis, T. benhamiae, and T. verrucosum, respectively. In addition, MIC ranges of CDF were obtained as 2–32, 4–16, 0.125–16, 8–16, 8, and 16 μg/ml, for T. tonsurans, T. mentagrophytes, T. interdigitale, M. canis, T. benhamiae, and T. verrucosum, respectively. CUR and CDF showed an inhibitory effect against dermatophyte isolates. CDF showed a stronger effect than CUR, especially against T. interdigitale. CUR and CDF have the capacity to be developed for use in dermatophytosis to augment existing preventative/therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weitzman I, Summerbell RC (1995) The dermatophytes. Clin Microbiol Rev 8(2):240–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D, Hendrickx M et al (2017) Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia 182(1–2):5–31

    Article  PubMed  Google Scholar 

  3. White TC, Oliver BG, Gräser Y, Henn MR (2008) Generating and testing molecular hypotheses in the dermatophytes. Eukaryot Cell 7(8):1238–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Behnam M, Zarrinfar H, Najafzadeh MJ, Naseri A, Jarahi L, Novak Babič M (2020) Low in vitro activity of sertaconazole against clinical isolates of dermatophyte. Curr Med Mycol 6(1):36–41

    PubMed  PubMed Central  Google Scholar 

  5. Ghannoum M (2016) Azole resistance in dermatophytes: prevalence and mechanism of action. J Am Podiatr Med Assoc 106(1):79–86

    Article  PubMed  Google Scholar 

  6. Mukherjee PK, Leidich SD, Isham N, Leitner I, Ryder NS, Ghannoum MA (2003) Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrob Agents Chemother 47(1):82–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coelho LM, Aquino-Ferreira R, Maffei CML, Martinez-Rossi NM (2008) In vitro antifungal drug susceptibilities of dermatophytes microconidia and arthroconidia. J Antimicrob Chemother 62(4):758–761

    Article  CAS  PubMed  Google Scholar 

  8. Gupta AK, Foley KA, Versteeg SG (2017) New antifungal agents and new formulations against dermatophytes. Mycopathologia 182(1):127–141

    Article  CAS  PubMed  Google Scholar 

  9. Kazemi M, Akbari A, Zarrinfar H, Soleimanpour S, Sabouri Z, Khatami M et al (2020) Evaluation of antifungal and photocatalytic activities of gelatin-stabilized selenium oxide nanoparticles. J Inorg Organomet Polym Mater

    Google Scholar 

  10. Alalwan H, Rajendran R, Lappin DF, Combet E, Shahzad M, Robertson D et al. (2017) The anti-adhesive effect of curcumin on Candida albicans biofilms on denture materials. Front Microbiol 8659

    Google Scholar 

  11. Katiraee F, Eidi S, Bahonar A, Zarrinfar H, Khosravi A (2008) Comparision of MICs of some Iranian herbal essences against azole resistance and azole susceptible of Candida Albicans. J Med Plants 3(27):37–44

    Google Scholar 

  12. Gupta SC, Patchva S, Koh W, Aggarwal BB (2012) Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39(3):283–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pakshir K, BAHA AL, Rezaei Z, Sodaifi M, Zomorodian K (2009) In vitro activity of six antifungal drugs against clinically important dermatophytes

    Google Scholar 

  14. Soleimani V, Sahebkar A, Hosseinzadeh H (2018) Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother Res 32(6):985–995

    Google Scholar 

  15. Panahi Y, Khalili N, Sahebi E, Namazi S, Simental-Mendía LE, Majeed M, Sahebkar A. Effects of Curcuminoids Plus Piperine on Glycemic, Hepatic and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Placebo-Controlled Trial. Drug Res (Stuttg). 2018 Jul;68(7):403-409. doi: 10.1055/s-0044-101752.

    Google Scholar 

  16. Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A (2019) Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr 59(1):89–101

    Article  CAS  PubMed  Google Scholar 

  17. Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A (2016) Role of micro RNAs in the therapeutic effects of curcumin in non-Cancer diseases. Mol Diagn Ther 20(4):335–345

    Article  CAS  PubMed  Google Scholar 

  18. Saberi-Karimian M, Keshvari M, Ghayour-Mobarhan M, Salehizadeh L, Rahmani S, Behnam B, Jamialahmadi T, Asgary S, Sahebkar A (2020) Effects of curcuminoids on inflammatory status in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Complement Therap Med. 49, art. no. 102322. https://doi.org/10.1016/j.ctim.2020.102322

  19. Ghandadi M, Sahebkar A (2017) Curcumin: An effective inhibitor of interleukin-6. Curr Pharm Des 23(6):921–931

    Google Scholar 

  20. Teymouri M, Pirro M, Johnston TP, Sahebkar A (2017) Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: a review of chemistry, cellular, molecular, and preclinical features. Biofactors 43(3):331–346

    Article  CAS  PubMed  Google Scholar 

  21. Momtazi AA, Sahebkar A (2016) Difluorinated curcumin: a promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr Pharm Des 22(28):4386–4397

    Google Scholar 

  22. Padhye S, Banerjee S, Chavan D, Pandye S, Swamy KV, Ali S et al (2009) Fluorocurcumins as cyclooxygenase-2 inhibitor: molecular docking, pharmacokinetics and tissue distribution in mice. Pharm Res 26(11):2438–2445

    Google Scholar 

  23. Ebrahimi M, Zarrinfar H, Naseri A, Najafzadeh MJ, Fata A, Parian M et al (2019) Epidemiology of dermatophytosis in northeastern Iran; a subtropical region. Curr Med Mycol 5(2):16

    PubMed  PubMed Central  Google Scholar 

  24. Nejati-Hoseini R, Zarrinfar H, Parian Noghani M, Parham S, Fata A, Rezaei-Matehkolaei A (2019) Identification of dermatophytosis agents in Mashhad, Iran, by using polymerase chain reaction sequencing (PCR sequencing) method. J Isfahan Med Sch 37:256–262

    Google Scholar 

  25. Qiu X, Du Y, Lou B, Zuo Y, Shao W, Huo Y et al (2010) Synthesis and identification of new 4-arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-kappaB signaling pathway. J Med Chem 53(23):8260–8273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shivamurthy RPM, Reddy SGH, Kallappa R, Somashekar SA, Patil D, Patil UN (2014) Comparison of topical anti-fungal agents sertaconazole and clotrimazole in the treatment of tinea corporis-an observational study. J Clin Diagn Res 8(9):HC09

    PubMed  PubMed Central  Google Scholar 

  27. Carrillo-Muñoz A, Fernández-Torres B, Cárdenes D, Guarro J (2003) In vitro activity of sertaconazole against dermatophyte isolates with reduced fluconazole susceptibility. Chemotherapy 49(5):248–251

    Article  PubMed  Google Scholar 

  28. Martinez-Rossi NM, Bitencourt TA, Peres NTA, Lang EAS, Gomes EV, Quaresemin NR et al (2018) Dermatophyte resistance to antifungal drugs: mechanisms and prospectus. Front Microbiol:91108–91108

    Google Scholar 

  29. Prasad CS, Shukla R, Kumar A, Dubey N (2010) In vitro and in vivo antifungal activity of essential oils of Cymbopogon martini and Chenopodium ambrosioides and their synergism against dermatophytes. Mycoses 53(2):123–129

    Article  CAS  PubMed  Google Scholar 

  30. Mahmood K, Zia KM, Zuber M, Salman M, Anjum MN (2015) Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: a review. Int J Biol Macromol:81877–81890

    Google Scholar 

  31. Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G (2012) Curcumin—from molecule to biological function. Angew Chem Int Ed 51(22):5308–5332

    Article  CAS  Google Scholar 

  32. Kwon Y (2014) Estimation of curcumin intake in Korea based on the Korea National Health and nutrition examination survey (2008-2012). Nutr Res Pract 8(5):589–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int 2014

    Google Scholar 

  34. Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K (2015) Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One 10(3)

    Google Scholar 

  35. Martins C, Da Silva D, Neres A, Magalhaes T, Watanabe G, Modolo L et al (2009) Curcumin as a promising antifungal of clinical interest. J Antimicrob Chemother 63(2):337–339

    Article  CAS  PubMed  Google Scholar 

  36. Shahzad M, Millhouse E, Culshaw S, Edwards CA, Ramage G, Combet E (2015) Selected dietary (poly) phenols inhibit periodontal pathogen growth and biofilm formation. Food Funct 6(3):719–729

    Article  CAS  PubMed  Google Scholar 

  37. Shahzad M, Sherry L, Rajendran R, Edwards CA, Combet E, Ramage G (2014) Utilising polyphenols for the clinical management of Candida albicans biofilms. Int J Antimicrob Agents 44(3):269–273

    Article  CAS  PubMed  Google Scholar 

  38. Kumar A, Dhamgaye S, Maurya IK, Singh A, Sharma M, Prasad R (2014) Curcumin targets cell wall integrity via Calcineurin-mediated signaling in <span class="named-content genus-species" id="named-content-1">Candida albicans</span>. Antimicrob Agents Chemother 58(1):167–175

    Article  PubMed  PubMed Central  Google Scholar 

  39. Temba BA, Fletcher MT, Fox GP, Harvey J, Okoth SA, Sultanbawa Y (2019) Curcumin-based photosensitization inactivates Aspergillus flavus and reduces aflatoxin B1 in maize kernels. Food Microbiol:8282–8288

    Google Scholar 

  40. Murugesh J, Annigeri RG, Mangala GK, Mythily PH, Chandrakala J (2019) Evaluation of the antifungal efficacy of different concentrations of Curcuma longa on Candida albicans: an in vitro study. J Oral Maxillofac Pathol: JOMFP 23(2):305–305

    Article  PubMed  Google Scholar 

  41. Khedmati E, Hashemi Hazaveh SJ, Bayat M, Amini K (2020) Identification of subtilisin virulence genes (SUB1-7) in Epidermophyton floccosum isolated from patients with dermatophytosis in Iran. Gene Rep 20100748

    Google Scholar 

  42. Garcia-Gomes A, Curvelo J, Soares RA, Ferreira-Pereira A (2012) Curcumin acts synergistically with fluconazole to sensitize a clinical isolate of Candida albicans showing a MDR phenotype. Med Mycol 50(1):26–32

    Article  CAS  PubMed  Google Scholar 

  43. Oglah MK, Mustafa YF, Bashir MK, Jasim MH, Mustafa YF (2020) Curcumin and its derivatives: a review of their biological activities. Syst Rev Pharm 11(3):472–481

    CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the staff of Medical Mycology and Parasitology Laboratory in Ghaem Teaching hospitals affiliated to Mashhad University of Medical Sciences. This work was financially supported by the Deputy of Research of Mashhad University of Medical Sciences (grant No. 951808).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zarrinfar, H., Behnam, M., Hatamipour, M., Sahebkar, A. (2021). Antifungal Activities of Curcuminoids and Difluorinated Curcumin Against Clinical Dermatophyte Isolates. In: Barreto, G.E., Sahebkar, A. (eds) Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health. Advances in Experimental Medicine and Biology, vol 1308. Springer, Cham. https://doi.org/10.1007/978-3-030-64872-5_8

Download citation

Publish with us

Policies and ethics