Skip to main content

Crocin Improves Oxidative Stress in Testicular Tissues of Streptozotocin-Induced Diabetic Rats

  • Chapter
  • First Online:
Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1308))

Abstract

Crocin has been shown to have potent antioxidant properties, but its potential antioxidative effects on testicular tissue during uncontrolled diabetes is unknown. Wistar rats were randomly divided into four separate groups; normal, normal-treated, diabetic and diabetic treated (n = 6 per group). Diabetes was induced by a single intravenous injection of streptozotocin (45 mg/kg). Two treated groups of animals (diabetic and non-diabetic) received Crocin daily for 56 days (40 mg/kg/intraperitoneally). At the end of the 56th day, animals were sacrificed and blood and testicular tissue obtained. The level of nitrate, malondialdehyde, glutathione, and the activities of superoxide dismutase and catalase enzymes were determined. Crocin therapy moderated the increased oxidative stress in testicular tissue induced by diabetes with a significant reduction in nitrate and malondialdehyde, whilst reducing superoxide dismutase and catalase enzyme activities in diabetes (p < 0.001), though glutathione was unaffected. Treatment by Crocin in normal rats also modestly improved parameters of oxidative stress (p < 0.05). Crocin has a protective effect on diabetes induced oxidative stress in testicular tissue in an animal model, though it is unclear if this is a direct antioxidant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yaribeygi H, Farrokhi FR, Rezaee R, Sahebkar A (2018) Oxidative stress induces renal failure: a review of possible molecular pathways. J Cell Biochem 119(4):2990–2998

    Article  CAS  PubMed  Google Scholar 

  2. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y et al (2009) The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol 29(2):493–502

    Article  CAS  PubMed  Google Scholar 

  4. Yaribeygi H, Mohammadi MT, Rezaee R, Sahebkar A (2018) Crocin improves renal function by declining Nox-4, IL-18, and p53 expression levels in an experimental model of diabetic nephropathy. J Cell Biochem 119(7):6080–6093

    Article  CAS  PubMed  Google Scholar 

  5. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S et al (2015) Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 6:183–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swomley AM, Butterfield DA (2015) Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics. Arch Toxicol 89(10):1669–1680

    Article  CAS  PubMed  Google Scholar 

  8. Siti HN, Kamisah Y, Kamsiah J (2015) The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc Pharmacol 71:40–56

    Article  CAS  Google Scholar 

  9. La Maestra S, De Flora S, Micale RT (2015) Effect of cigarette smoke on DNA damage, oxidative stress, and morphological alterations in mouse testis and spermatozoa. Int J Hyg Environ Health 218(1):117–122

    Article  PubMed  Google Scholar 

  10. Turner TT, Lysiak JJ (2008) Oxidative stress: a common factor in testicular dysfunction. J Androl 29(5):488–498

    Article  CAS  PubMed  Google Scholar 

  11. Saleh RA, HCLD AA (2002) Oxidative stress and male infertility: from research bench to clinical practice. J Androl 23(6):737–752

    CAS  PubMed  Google Scholar 

  12. Agarwal A, Virk G, Ong C, du Plessis SS (2014) Effect of oxidative stress on male reproduction. World J Men’s Health 32(1):1–17

    Article  Google Scholar 

  13. Choudhary R, Chawala V, Soni N, Kumar J, Vyas R (2010) Oxidative stress and role of antioxidants in male infertility. Pak J Physiol 6(2):54–59

    Google Scholar 

  14. Makker K, Agarwal A, Sharma R (2009) Oxidative stress & male infertility. Indian J Med Res 129(4):357–367

    CAS  PubMed  Google Scholar 

  15. Schulte RT, Ohl DA, Sigman M, Smith GD (2010) Sperm DNA damage in male infertility: etiologies, assays, and outcomes. J Assist Reprod Genet 27(1):3–12

    Article  PubMed  Google Scholar 

  16. Agarwal A, Saleh RA, Bedaiwy MA (2003) Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79(4):829–843

    Article  PubMed  Google Scholar 

  17. Aitken RJ, Baker MA (2013) Causes and consequences of apoptosis in spermatozoa; contributions to infertility and impacts on development. Int J Dev Biol 57(2–3–4):265–272

    Article  CAS  PubMed  Google Scholar 

  18. Sheweita SA, Tilmisany AM, Al-Sawaf H (2005) Mechanisms of male infertility: role of antioxidants. Curr Drug Metab 6(5):495–501

    Article  CAS  PubMed  Google Scholar 

  19. Sabeur K, Ball B (2007) Characterization of NADPH oxidase 5 in equine testis and spermatozoa. Reproduction 134(2):263–270

    Article  CAS  PubMed  Google Scholar 

  20. Jam IN, Sahebkar AH, Eslami S, Mokhber N, Nosrati M, Khademi M et al (2017) The effects of crocin on the symptoms of depression in subjects with metabolic syndrome. Adv Clin Exp Med 26(6):925–930

    Article  PubMed  Google Scholar 

  21. Rahiman N, Akaberi M, Sahebkar A, Emami SA, Tayarani-Najaran Z (2018) Protective effects of saffron and its active components against oxidative stress and apoptosis in endothelial cells. Microvasc Res 118:82–89

    Article  CAS  PubMed  Google Scholar 

  22. Nikbakht-Jam I, Khademi M, Nosrati M, Eslami S, Foroutan-Tanha M, Sahebkar A et al (2015) Effect of crocin extracted from saffron on pro-oxidant–anti-oxidant balance in subjects with metabolic syndrome: a randomized, placebo-controlled clinical trial. Eur J Intern Med 8(3):307–312

    Article  Google Scholar 

  23. Javadi B, Sahebkar A, Emami SA (2013) A survey on saffron in major Islamic traditional medicine books. Iran J Basic Med Sci 16(1):1–11

    PubMed  PubMed Central  Google Scholar 

  24. Riazi A, Panahi Y, Alishiri AA, Hosseini MA, Zarchi AAK, Sahebkar A (2017) The impact of saffron (Crocus sativus) supplementation on visual function in patients with dry age-related macular degeneration. Ital J Med 11(2):196–201

    Google Scholar 

  25. Shafiee M, Arekhi S, Omranzadeh A, Sahebkar A (2017) Saffron in the treatment of depression, anxiety and other mental disorders: current evidence and potential mechanisms of action. J Affect Disord 227:330–337

    Article  PubMed  Google Scholar 

  26. Razak SIA, Anwar Hamzah MS, Yee FC, Kadir MRA, Nayan NHM (2017) A review on medicinal properties of saffron toward major diseases. Int J Geogr Inf Syst 23(2):98–116

    Google Scholar 

  27. Vahedi M, Govil S, Kumar S, Shrivastava D, Karimi R, Bisen PS (2016) Therapeutic applications of crocus sativus L. (Saffron): a review. Nat Prod J 6(3):162–171

    CAS  Google Scholar 

  28. Goyal S, Arora S, Sharma A, Joshi S, Ray R, Bhatia J et al (2010) Preventive effect of crocin of Crocus sativus on hemodynamic, biochemical, histopathological and ultrastuctural alterations in isoproterenol-induced cardiotoxicity in rats. Phytomedicine 17(3–4):227–232

    Article  PubMed  Google Scholar 

  29. Fang Z, Tang Y, Fang J, Zhou Z, Xing Z, Guo Z et al (2013) Simvastatin inhibits renal cancer cell growth and metastasis via AKT/mTOR, ERK and JAK2/STAT3 pathway. PLoS One 8(5):e62823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ochiai T, Shimeno H, Mishima K-i, Iwasaki K, Fujiwara M, Tanaka H et al (2007) Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim Biophys Acta Gen Subj 1770(4):578–584

    Article  CAS  Google Scholar 

  31. Hesari AK, Shahrooz R, Ahmadi A, Malekinejad H, Saboory E (2015) Crocin prevention of anemia-induced changes in structural and functional parameters of mice testes. J Appl Biomed 13(3):213–223

    Article  Google Scholar 

  32. Salahshoor MR, Khazaei M, Jalili C, Keivan M (2016) Crocin improves damage induced by nicotine on a number of reproductive parameters in male mice. Int J Fertil Steril 10(1):71

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Winterbourn CC, Hawkins RE, Brian M, Carrell R (1975) The estimation of red cell superoxide dismutase activity. J Lab Clin Med 85(2):337–341

    CAS  PubMed  Google Scholar 

  34. Aebi H. (1984) [13] Catalase in vitro. In Methods in enzymology, vol 105. Elsevier, pp 121–126

    Google Scholar 

  35. Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27(3):502–522

    Article  CAS  PubMed  Google Scholar 

  36. Granger DL, Taintor RR, Boockvar KS, Hibbs JB (1996) Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymol 268:142–151

    Article  CAS  PubMed  Google Scholar 

  37. Satoh M, Fujimoto S, Haruna Y, Arakawa S, Horike H, Komai N et al (2005) NAD (P) H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am J Physiol Ren Physiol 288(6):F1144–F1152

    Article  CAS  Google Scholar 

  38. Chen Y, Zhang H, Tian X, Zhao C, Cai L, Liu Y et al (2008) Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides ELLIS and Crocus sativus L.: a relationship investigation between antioxidant activity and crocin contents. Food Chem 109(3):484–492

    Article  CAS  Google Scholar 

  39. Yaribeygi H, Mohammadi M (2017) Protective effect of crocin on kidney performance in chronic uncontrolled hyperglycemia-induced nephropathy in rat. J Adv Med Biomed Res 25(109):36–49

    Google Scholar 

  40. Bandegi AR, Rashidy-Pour A, Vafaei AA, Ghadrdoost B (2014) Protective effects of Crocus sativus L. extract and crocin against chronic-stress induced oxidative damage of brain, liver and kidneys in rats. Adv Pharm Bull 4(Suppl 2):493

    PubMed  PubMed Central  Google Scholar 

  41. Asdaq SMB, Inamdar MN (2010) Potential of Crocus sativus (saffron) and its constituent, crocin, as hypolipidemic and antioxidant in rats. Appl Biochem Biotechnol 162(2):358–372

    Article  CAS  PubMed  Google Scholar 

  42. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48(1):1–9

    Article  CAS  PubMed  Google Scholar 

  43. Kanter M, Aktas C, Erboga M (2013) Curcumin attenuates testicular damage, apoptotic germ cell death, and oxidative stress in streptozotocin-induced diabetic rats. Mol Nutr Food Res 57(9):1578–1585

    Article  CAS  PubMed  Google Scholar 

  44. Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J (1998) Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. Clin Sci 94(6):623–632

    Article  CAS  Google Scholar 

  45. Salceda R, Vilchis C, Coffe V, Hernández-Muñoz R (1998) Changes in the redox state in the retina and brain during the onset of diabetes in rats. Neurochem Res 23(6):893–897

    Article  CAS  PubMed  Google Scholar 

  46. Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M (2017) The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J Clin Diagn Res 11(5):IE01

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shrilatha B (2007) Early oxidative stress in testis and epididymal sperm in streptozotocin-induced diabetic mice: its progression and genotoxic consequences. Reprod Toxicol 23(4):578–587

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interests

All of the authors declare that there is no conflict of interest.

Financial Disclosure

No funding was received for this study to be performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yaribeygi, H., Atkin, S.L., Barreto, G.E., Sahebkar, A. (2021). Crocin Improves Oxidative Stress in Testicular Tissues of Streptozotocin-Induced Diabetic Rats. In: Barreto, G.E., Sahebkar, A. (eds) Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health. Advances in Experimental Medicine and Biology, vol 1308. Springer, Cham. https://doi.org/10.1007/978-3-030-64872-5_19

Download citation

Publish with us

Policies and ethics