Skip to main content

Advertisement

Log in

Potential of Crocus sativus (saffron) and its Constituent, Crocin, as Hypolipidemic and Antioxidant in Rats

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the hypolipidemic and antioxidant potential of saffron and its active constituent, crocin, in hyperlipidemic rats. The animals fed either with normal fat diet or high fat diet were administered orally saffron (25, 50, and 100 mg/kg) or crocin (4.84, 9.69, and 19.38 mg/kg) in their respective groups for five consecutive days. Biochemical estimations of triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), alkaline phosphatase (ALP), aspartate transaminase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA), glutathione peroxidase enzyme activity (GSHPx), total glutathione (GSH), and oxidized glutathione (GSSG) in serum and superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive species (TBARS), ferric reducing/antioxidant power (FRAP), and total sulfhydryl (SH) groups in liver tissue homogenate were carried out. Both saffron and crocin were effective in decreasing the elevated levels of TG, TC, ALP, AST, ALT, MDA, GSHPx, GSH, and GSSG in serum and increasing SOD, CAT, FRAP, and SH values in liver tissue with reduction in TBARS. The saffron was found to be superior to crocin indicating the involvement of other potential constituents of saffron apart from crocin for its synergistic behavior of quenching the free radicals and ameliorating the damages of hyperlipidemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frishman, W. H. (1998). American Journal of Medicine, 104, 18S–27S.

    Article  CAS  Google Scholar 

  2. Smith, J. R. S. C., Jackson, R., Pearson, T. A., Fuster, V., Yusuf, S., Faergeman, O., et al. (2004). Circulation, 109, 3112–3121.

    Article  Google Scholar 

  3. Jahromi, F., Ray, A. B., & Chansouria, J. P. N. (1993). Journal of Natural Products, 56, 989–994.

    Article  CAS  Google Scholar 

  4. Howard, B. V., & Kritchevsky, D. (1997). Circulation, 95, 2591–2593.

    CAS  Google Scholar 

  5. Hung, H. C., Merchant, A., Willett, W., Ascherio, A., Rosner, B. A., Rimm, E., et al. (2003). Epidemiology, 14, 659–665.

    Article  Google Scholar 

  6. Mozaffarian, D., Kumanyika, S. K., Lemaitre, R. N., Olson, J. L., Burke, G. L., & Siscovick, D. S. (2003). JAMA, 289, 1659–1666.

    Article  Google Scholar 

  7. Abdullaev, F. I., & Espinosa-Aguirre, J. J. (2004). Cancer Detection and Prevention, 28, 426–432.

    Article  CAS  Google Scholar 

  8. Rios, J. L., Recio, M. C., Ginger, R. M., & Manz, S. (1996). Phytotherapy Research, 10, 189–193.

    Article  CAS  Google Scholar 

  9. Hosseinzadeh, H., & Khosravan, V. (2002). Archives of Iranian Medicine, 5, 44–47.

    Google Scholar 

  10. Hosseinzadeh, H., Karimi, G. H., & Niapoor, M. (2004). Acta Horticulturae, 650, 435–445.

    CAS  Google Scholar 

  11. Hosseinzadeh, H., & Younesi, H. M. (2002). BMC Pharmacology, 2, 1–8.

    Google Scholar 

  12. Abdullaev, F. J. (1993). BioFactors, 4, 83–86.

    CAS  Google Scholar 

  13. Abdullaev, J., Caballero-Ortega, H., Riveron-Nigrete, L., Peredamiranda, R., Rivera-Luna, R., Manuel-Hernandez, J., et al. (2002). Revista de Investigacion Clinica, 54, 430–436.

    Google Scholar 

  14. Nair, S. C., Kurumboor, S. K., & Hasegawa, J. H. (1995). Cancer Biotherapy, 10, 257–264.

    CAS  Google Scholar 

  15. Assimopoulou, A. N., Sinakos, Z., & Papageorgiou, V. P. (2005). Phytotherapy Research, 19, 997–1000.

    Article  CAS  Google Scholar 

  16. Verma, S. K., & Bordia, A. (1998). Indian Journal of Medical Sciences, 52, 205–207.

    CAS  Google Scholar 

  17. Baker, D., & Negbi, M. (1983). Economic Botany, 37, 228–236.

    Google Scholar 

  18. Bhargava, V. K. (2007). M Pharm. Thesis, Rajiv Gandhi University of Health Sciences, Karnataka, India.

  19. Li, N., Lin, G., Kwan, Y. W., & Min, Z. D. (1999). Journal of Chromatography A, 849, 349–355.

    Article  CAS  Google Scholar 

  20. Guido, S., & Joseph, T. (1992). Indian Journal of Experimental Biology, 30, 292–296.

    CAS  Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. I. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  22. Lawrence, R. A., & Burk, R. F. (1976). Biochemical and Biophysical Research Communications, 71, 952–958.

    Article  CAS  Google Scholar 

  23. Gavino, V. C., Miller, J. S., Ikharebha, S. O., Milo, G. E., & Cornwall, D. G. (1981). Journal of Lipid Research, 22, 763–769.

    CAS  Google Scholar 

  24. Owens, C. W., & Belcher, R. V. (1965). Biochemical Journal, 94, 705–710.

    CAS  Google Scholar 

  25. El-Hazmi, M. A., & Warsy, A. S. (2001). Journal of Tropical Pediatrics, 47, 181–186.

    Article  CAS  Google Scholar 

  26. Fossati, P., & Prencipe, L. (1982). Clinical Chemistry, 28, 2077–2081.

    CAS  Google Scholar 

  27. Mc Gown, M. W., Artiss, J. D., Strandberg, D. R., & Zak, B. A. (1983). Clinical Chemistry, 29, 538–542.

    Google Scholar 

  28. Friedwald’s, W. T., Levy, I. R., & Friedrickson, S. D. (1972). Clinical Chemistry, 18, 499–504.

    Google Scholar 

  29. Bahramikia, S., & Yazdanparast, R. (2008). Journal of Ethnopharmacology, 115, 116–121.

    Google Scholar 

  30. King, E. J., & Armstrong, A. R. (1934). Canadian Medical Association Journal, 31, 376–381.

    CAS  Google Scholar 

  31. Retimen, S., & Frankel, S. A. (1957). American Journal of Clinical Pathology, 28, 56–63.

    Google Scholar 

  32. Fernandez, J., Perez-Alvarez, J. A., & Fernandez-lopez, J. A. (1997). Food Chemistry, 99, 345–353.

    Article  Google Scholar 

  33. Uchiama, M., & Miahara, M. (1978). Analytical Chemistry, 86, 279–286.

    Google Scholar 

  34. Benzie, I. F. F., & Strain, J. J. (1996). Analytical Chemistry, 239, 70–76.

    CAS  Google Scholar 

  35. Benzie, I. F. F., & Strain, J. J. (1999). Methods in Enzymology, 299, 15–27.

    Article  CAS  Google Scholar 

  36. Ellman, G. (1959). Archives of Biochemistry and Biophysics, 82, 70–77.

    Article  CAS  Google Scholar 

  37. Kakkar, P., Das, B., & Viswanathan, P. N. (1984). Indian Journal of Biochemistry and Biophysics, 21, 131–132.

    Google Scholar 

  38. Aebi, H. (1974). In H. Bergmeyar (Ed.), Methods in enzymatic analysis (pp. 674–684). New York: Academic.

  39. Devi, R., & Sharma, D. K. (2004). Journal of Ethnopharmacology, 90, 63–74.

    Article  Google Scholar 

  40. Temme, E. H., Van, H. P. G., Schouten, E. G., & Kasteloot, H. (2002). Acta Cardiologica, 57, 111–114.

    Article  Google Scholar 

  41. De Graat, J., De Sauvage, N. P. R., Van Dam, M., Belsey, E. M., Kastelein, J. J., & Haydn, P. P. (2002). British Journal of Nutrition, 88, 479–483.

    Article  Google Scholar 

  42. Harrison, D., Kathy, K. G., Homig, B., & Drexler, H. (2003). American Journal of Cardiology, 91, 7A–11A.

    Article  CAS  Google Scholar 

  43. Wilson, P. W. F. (1990). American Journal of Cardiology, 66, 7A–12A.

    Article  CAS  Google Scholar 

  44. Fernandez, J. A. (2004). Recent Research Development Plant Science, 2, 127–159.

    CAS  Google Scholar 

  45. Koshy, A. S., & Vijayalakshmi, N. R. (2001). Phytotherapy Research, 15, 395–400.

    Article  CAS  Google Scholar 

  46. Wang, H. X., & Ng, T. B. (1999). Life Sciences, 65, 2663–2777.

    Article  CAS  Google Scholar 

  47. Weggemans, R. M., & Trautwein, E. A. (2003). European Journal of Clinical Pharmacology, 57, 940–946.

    CAS  Google Scholar 

  48. Bolkent, S., Yanardag, R., Bolkent, S., & Doger, M. M. (2004). Biological Trace Element Research, 101, 219–230.

    Article  CAS  Google Scholar 

  49. Kew, M. C. (2000). Lancet, 355, 591–592.

    Article  CAS  Google Scholar 

  50. Aronoff, S. (1965). Science, 150, 72–73.

    Article  CAS  Google Scholar 

  51. Beazley, W. D., Gaze, D. C., Panske, A., Panzig, E., & Schallreuter, K. U. (1999). British Journal of Dermatology, 41, 301–303.

    Article  Google Scholar 

  52. Cohen, G., & Hochstein, P. (1964). Biochemistry, 3, 895–900.

    Article  CAS  Google Scholar 

  53. Abdollahi, M., Ranjbar, R., Shadnia, S., Nikfar, S., & Rezaie, A. (2004). Medical Science Monitor, 10, 141–147.

    Google Scholar 

  54. Parihar, M. S., & Hemnani, T. (2003). Journal of Biosciences, 28, 121–128.

    Article  CAS  Google Scholar 

  55. Jansen, E. V. (1959). Science, 130, 1319–1323.

    Article  Google Scholar 

  56. Dormandy, T. L. (1980). Acta Physiologica Scandinavica, 492, 153–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Mohammed Basheeruddin Asdaq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asdaq, S.M.B., Inamdar, M.N. Potential of Crocus sativus (saffron) and its Constituent, Crocin, as Hypolipidemic and Antioxidant in Rats. Appl Biochem Biotechnol 162, 358–372 (2010). https://doi.org/10.1007/s12010-009-8740-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8740-7

Keywords

Navigation