Skip to main content

The Upper Limit of Vulnerability and Critical Points for Defibrillation

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy

Abstract

Electrical shocks delivered during the repolarization phase of the cardiac cycle can initiate ventricular fibrillation. However, shocks delivered above a certain threshold, called the upper limit of vulnerability, will no longer induce arrhythmias. The upper limit of vulnerability is tied closely to the defibrillation threshold, which is the minimum energy which can be delivered to terminate ventricular fibrillation. Induction of and termination of fibrillation is determined by the creation of critical points, the intersection of a critical level of refractoriness with a critical level of extracellular potential gradient. Virtual electrode critical points may also be created by large changes in transmembrane potential over a short distance, which can form new activation wavefronts and reinitiate arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singer I, Lang D. Defibrillation threshold: clinical utility and therapeutic implications. Pacing Clin Electrophysiol. 1992;15(6):932–49. Epub 1992/06/01. PubMed PMID: 1376905. https://doi.org/10.1111/j.1540-8159.1992.tb03083.x.

    Article  CAS  PubMed  Google Scholar 

  2. Davy JM, Fain ES, Dorian P, Winkle RA. The relationship between successful defibrillation and delivered energy in open-chest dogs: reappraisal of the "defibrillation threshold" concept. Am Heart J. 1987;113(1):77–84. Epub 1987/01/01. PubMed PMID: 3799444. https://doi.org/10.1016/0002-8703(87)90012-3.

    Article  CAS  PubMed  Google Scholar 

  3. Lesigne C, Levy B, Saumont R, Birkui P, Bardou A, Rubin B. An energy-time analysis of ventricular fibrillation and defibrillation thresholds with internal electrodes. Med Biol Eng. 1976;14(6):617–22. Epub 1976/11/01. PubMed PMID: 994572

    Article  CAS  Google Scholar 

  4. Chen PS, Shibata N, Dixon EG, Martin RO, Ideker RE. Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation. 1986;73(5):1022–8. Epub 1986/05/01. PubMed PMID: 3698224. https://doi.org/10.1161/01.cir.73.5.1022.

    Article  CAS  PubMed  Google Scholar 

  5. Malkin RA, Idriss SF, Walker RG, Ideker RE. Effect of rapid pacing and T-wave scanning on the relation between the defibrillation and upper-limit-of-vulnerability dose-response curves. Circulation. 1995;92(5):1291–9. Epub 1995/09/01. PubMed PMID: 7648678. https://doi.org/10.1161/01.cir.92.5.1291.

    Article  CAS  PubMed  Google Scholar 

  6. Swerdlow CD, Shehata M, Chen PS. Using the upper limit of vulnerability to assess defibrillation efficacy at implantation of ICDs. Pacing Clin Electrophysiol. 2007;30(2):258–70. Epub 2007/03/07. PubMed PMID: 17338725. https://doi.org/10.1111/j.1540-8159.2007.00659.x.

    Article  PubMed  Google Scholar 

  7. Swerdlow CD, Ahern T, Kass RM, Davie S, Mandel WJ, Chen PS. Upper limit of vulnerability is a good estimator of shock strength associated with 90% probability of successful defibrillation in humans with transvenous implantable cardioverter-defibrillators. J Am Coll Cardiol. 1996;27(5):1112–8. Epub 1996/04/01. PubMed PMID: 8609329. https://doi.org/10.1016/0735-1097(95)00603-6.

    Article  CAS  PubMed  Google Scholar 

  8. Pittaro M, Deforge W, Kroll MW. Reducing ICD test shocks with a simplified upper limit of vulnerability. Pacing Clin Electrophysiol. 2016;39(7):652–7. Epub 2016/03/29. PubMed PMID: 27019321. https://doi.org/10.1111/pace.12863.

    Article  PubMed  Google Scholar 

  9. Hwang C, Swerdlow CD, Kass RM, Gang ES, Mandel WJ, Peter CT, Chen PS. Upper limit of vulnerability reliably predicts the defibrillation threshold in humans. Circulation. 1994;90(5):2308–14. Epub 1994/11/01. PubMed PMID: 7955188. https://doi.org/10.1161/01.cir.90.5.2308.

    Article  CAS  PubMed  Google Scholar 

  10. Shibata N, Chen PS, Dixon EG, Wolf PD, Danieley ND, Smith WM, Ideker RE. Epicardial activation after unsuccessful defibrillation shocks in dogs. Am J Phys. 1988;255(4 Pt 2):H902–9. Epub 1988/10/01. PubMed PMID: 3177679. https://doi.org/10.1152/ajpheart.1988.255.4.H902.

    Article  CAS  Google Scholar 

  11. Yamashita S, Yoshida A, Fukuzawa K, Fujiwara R, Suzuki A, Nakanishi T, Matsumoto A, Konishi H, Ichibori H, Hirata K. Upper limit of vulnerability during defibrillator implantations predicts the occurrence of appropriate shock therapy for ventricular fibrillation. Circ J. 2014;78(7):1606–11. Epub 2014/05/13. PubMed PMID: 24817761. https://doi.org/10.1253/circj.cj-14-0136.

    Article  PubMed  Google Scholar 

  12. Yamashita S, Yoshida A, Fukuzawa K, Nakanishi T, Matsumoto A, Konishi H, Ichibori H, Hyogo K, Imada H, Hirata K. The relationship between cardiac vulnerability and restitution properties of the ventricular activation recovery interval. J Cardiovasc Electrophysiol. 2015;26(7):768–73. Epub 2015/03/27. PubMed PMID: 25810143. https://doi.org/10.1111/jce.12672.

    Article  PubMed  Google Scholar 

  13. De Piccoli B, Rigo F, Raviele A, Piccolo E, Maggiolo C, Milanesi A, Simone M. Transesophageal echocardiographic evaluation of the morphologic and hemodynamic cardiac changes during ventricular fibrillation. J Am Soc Echocardiograph. 1996;9(1):71–8. Epub 1996/01/01. PubMed PMID: 8679239

    Article  Google Scholar 

  14. Foley PJ, Tacker WA, Wortsman J, Frank S, Cryer PE. Plasma catecholamine and serum cortisol responses to experimental cardiac arrest in dogs. Am J Phys. 1987;253(3 Pt 1):E283–9. Epub 1987/09/01. PubMed PMID: 3631258. https://doi.org/10.1152/ajpendo.1987.253.3.E283.

    Article  CAS  Google Scholar 

  15. Kern KB, Elchisak MA, Sanders AB, Badylak SF, Tacker WA, Ewy GA. Plasma catecholamines and resuscitation from prolonged cardiac arrest. Crit Care Med. 1989;17(8):786–91. Epub 1989/08/01. PubMed PMID: 2752773. https://doi.org/10.1097/00003246-198908000-00013.

    Article  CAS  PubMed  Google Scholar 

  16. Tovar OH, Jones JL. Electrophysiological deterioration during long-duration ventricular fibrillation. Circulation. 2000;102(23):2886–91. Epub 2000/01/11. PubMed PMID: 11104749. https://doi.org/10.1161/01.cir.102.23.2886.

    Article  CAS  PubMed  Google Scholar 

  17. Robertson PG, Huang J, Chen KA, Chen X, Dosdall DJ, Tabereaux PB, Smith WM, Ideker RE. Increased cycle length during long-duration ventricular fibrillation is caused by decreased upstroke velocity as well as prolonged refractoriness. Heart Rhythm. 2009;6(3):378–84. Epub 2009/03/03. PubMed PMID: 19251215; PMCID: 2692204. https://doi.org/10.1016/j.hrthm.2008.12.016.

    Article  PubMed  Google Scholar 

  18. Mazeh N, Roth BJ. A mechanism for the upper limit of vulnerability. Heart Rhythm. 2009;6(3):361–7. Epub 2009/03/03. PubMed PMID: 19251212; PMCID: PMC2672308. https://doi.org/10.1016/j.hrthm.2008.11.010.

    Article  PubMed  Google Scholar 

  19. Rantner LJ, Arevalo HJ, Constantino JL, Efimov IR, Plank G, Trayanova NA. Three-dimensional mechanisms of increased vulnerability to electric shocks in myocardial infarction: altered virtual electrode polarizations and conduction delay in the peri-infarct zone. J Physiol. 2012;590(18):4537–51. Epub 2012/05/16. PubMed PMID: 22586222; PMCID: PMC3477756. https://doi.org/10.1113/jphysiol.2012.229088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han J, Moe GK. Nonuniform recovery of excitability in ventricular muscle. Circ Res. 1964;14:44–60. Epub 1964/01/01. PubMed PMID: 14104163. https://doi.org/10.1161/01.res.14.1.44.

    Article  CAS  PubMed  Google Scholar 

  21. Guyton AC, Hall JE. Ch.13 cardiac arrhythmias and their electrocardiographic interpretation. In: Textbook of medical physiology. 13th ed. Philadelphia: W.B. Saunders Co; 2016. p. 155–66.

    Google Scholar 

  22. Cao JM, Qu Z, Kim YH, Wu TJ, Garfinkel A, Weiss JN, Karagueuzian HS, Chen PS. Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing: importance of cardiac restitution properties. Circ Res. 1999;84(11):1318–31.

    Article  CAS  Google Scholar 

  23. Winfree AT. When time breaks down: the three-dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton: Princeton University Press; 1987. p. 1–153.

    Google Scholar 

  24. Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev T, Tchou PJ. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure. Circ Res. 1998;82(8):918–25. Epub 1998/05/12. PubMed PMID: 9576111. https://doi.org/10.1161/01.res.82.8.918.

    Article  CAS  PubMed  Google Scholar 

  25. Frazier DW, Wolf PD, Wharton JM, Tang AS, Smith WM, Ideker RE. Stimulus-induced critical point. Mechanism for electrical initiation of reentry in normal canine myocardium. J Clin Invest. 1989;83(3):1039–52. Epub 1989/03/01. PubMed PMID: 2921316; PMCID: PMC303781. https://doi.org/10.1172/JCI113945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Knisley SB, Smith WM, Ideker RE. Effect of field stimulation on cellular repolarization in rabbit myocardium. Implications for reentry induction. Circ Res. 1992;70(4):707–15. Epub 1992/04/01. PubMed PMID: 1551197. https://doi.org/10.1161/01.res.70.4.707.

    Article  CAS  PubMed  Google Scholar 

  27. Daubert JP, Frazier DW, Wolf PD, Franz MR, Smith WM, Ideker RE. Response of relatively refractory canine myocardium to monophasic and biphasic shocks. Circulation. 1991;84(6):2522–38. Epub 1991/12/01. PubMed PMID: 1959202. https://doi.org/10.1161/01.cir.84.6.2522.

    Article  CAS  PubMed  Google Scholar 

  28. Ideker RE, Alferness C, Melnick S, Sreenan KM, Johnson E, Smith WM. Reentry site during fibrillation induction in relation to defibrillation efficacy for different shock waveforms. J Cardiovasc Electrophysiol. 2001;12(5):581–91. Epub 2001/06/02. PubMed PMID: 11386521. https://doi.org/10.1046/j.1540-8167.2001.00581.x.

    Article  CAS  PubMed  Google Scholar 

  29. Winfree AT. Time encircles a singularity. When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias. Princeton, NJ: Princeton University Press; 1987:125–153.

    Google Scholar 

  30. Shibata N, Chen PS, Dixon EG, Wolf PD, Danieley ND, Smith WM, Ideker RE. Influence of shock strength and timing on induction of ventricular arrhythmias in dogs. Am J Phys. 1988;255(4 Pt 2):H891–901. Epub 1988/10/01. PubMed PMID: 3177678. https://doi.org/10.1152/ajpheart.1988.255.4.H891.

    Article  CAS  Google Scholar 

  31. Idriss SF, Wolf PD, Smith WM, Ideker RE. Effect of pacing site on ventricular fibrillation initiation by shocks during the vulnerable period. Am J Phys. 1999;277(5):H2065–82. Epub 1999/11/24. PubMed PMID: 10564163. https://doi.org/10.1152/ajpheart.1999.277.5.H2065.

    Article  CAS  Google Scholar 

  32. Chen PS, Shibata N, Dixon EG, Wolf PD, Danieley ND, Sweeney MB, Smith WM, Ideker RE. Activation during ventricular defibrillation in open-chest dogs. Evidence of complete cessation and regeneration of ventricular fibrillation after unsuccessful shocks. J Clin Invest. 1986;77(3):810–23. Epub 1986/03/01. PubMed PMID: 3949979; PMCID: PMC423467. https://doi.org/10.1172/JCI112378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dosdall DJ, Osorio J, Robichaux RP, Huang J, Li L, Ideker RE. Purkinje activation precedes myocardial activation following defibrillation after long-duration ventricular fibrillation. Heart Rhythm. 2010;7(3):405–12. Epub 2010/01/12. S1547-5271(09)01329-0 [pii]. PubMed PMID: 20061187; PMCID: 2829372. https://doi.org/10.1016/j.hrthm.2009.11.025.

    Article  PubMed  Google Scholar 

  34. Chattipakorn N, Ideker RE. Delayed afterdepolarization inhibitor: a potential pharmacologic intervention to improve defibrillation efficacy. J Cardiovasc Electrophysiol 2003;14(1):72–75.

    Google Scholar 

  35. Krassowska W, Frazier DW, Pilkington TC, Ideker RE. Potential distribution in three-dimensional periodic myocardium--part II: application to extracellular stimulation. IEEE Trans Biomed Eng. 1990;37(3):267–84. Epub 1990/03/01. PubMed PMID: 2329001. https://doi.org/10.1109/10.52328.

    Article  CAS  PubMed  Google Scholar 

  36. Lin SF, Roth BJ, Wikswo JP Jr. Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism. J Cardiovasc Electrophysiol. 1999;10(4):574–86. Epub 1999/06/04. PubMed PMID: 10355700. https://doi.org/10.1111/j.1540-8167.1999.tb00715.x.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrode-induced reexcitation: a mechanism of defibrillation. Circ Res. 1999;85(11):1056–66.

    Article  CAS  Google Scholar 

  38. Trayanova NA, Gray RA, Bourn DW, Eason JC. Virtual electrode-induced positive and negative graded responses: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol. 2003;14(7):756–63. PubMed PMID: 12930258.

    Article  Google Scholar 

  39. Knisley SB, Baynham TC. Line stimulation parallel to myofibers enhances regional uniformity of transmembrane voltage changes in rabbit hearts. Circ Res. 1997;81(2):229–41. Epub 1997/08/01. PubMed PMID: 9242184. https://doi.org/10.1161/01.res.81.2.229.

    Article  CAS  PubMed  Google Scholar 

  40. Dosdall DJ, Cheng KA, Huang J, Allison JS, Allred JD, Smith WM, Ideker RE. Transmural and endocardial Purkinje activation in pigs before local myocardial activation after defibrillation shocks. Heart Rhythm. 2007;4(6):758–65. https://doi.org/10.1016/j.hrthm.2007.02.017. PubMed PMID: 17556199; PMCID: PMC2077846

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nikolski VP, Efimov IR. Electroporation of the heart. Europace. 2005;7(Suppl 2):146–54. Epub 2005/08/17. PubMed PMID: 16102512. https://doi.org/10.1016/j.eupc.2005.04.011.

    Article  PubMed  Google Scholar 

  42. Sharifov OF, Fast VG. Role of intramural virtual electrodes in shock-induced activation of left ventricle: optical measurements from the intact epicardial surface. Heart Rhythm. 2006;3(9):1063–73. Epub 2006/09/02. PubMed PMID: 16945803. https://doi.org/10.1016/j.hrthm.2006.05.018.

    Article  PubMed  Google Scholar 

  43. Windisch H, Platzer D, Bilgici E. Quantification of shock-induced microscopic virtual electrodes assessed by subcellular resolution optical potential mapping in Guinea pig papillary muscle. J Cardiovasc Electrophysiol. 2007;18(10):1086–94. Epub 2007/07/28. PubMed PMID: 17655676. https://doi.org/10.1111/j.1540-8167.2007.00908.x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Health Institutes, Heart, Lung and Blood Institute Research Grants HL 128752 and grant support from the Treadwell Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek J. Dosdall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dosdall, D.J., Ideker, R.E. (2021). The Upper Limit of Vulnerability and Critical Points for Defibrillation. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics