Skip to main content

History of Optical Mapping

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy
  • 666 Accesses

Abstract

Optical mapping is an imaging technique that is used to record physiologic phenomena from live tissue. To date, optical imaging has been applied in the heart to record NADH+, transmembrane potential, and intracellular calcium transients. While NADH+ imaging relies on the intrinsic fluorescent signals from the tissue, fluorescent dyes have been developed to record transmembrane potential and calcium transients. Optical mapping has been applied to cardiac tissue at multiple scales, from single cells all the way up to in vivo whole hearts. This technique has also evolved in terms of number heart surfaces and number of parameters that can be measured simultaneously from the heart. The latter technique gives the user the ability to look at the inter-relationship between different physiological phenomena. This chapter discusses the origins of the use of optical mapping in cardiac research, the process of optical mapping of the heart, and the evolution of dyes and equipment used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mines GR. On functional analysis by action of electrolytes. J Physiol. 1913;19:188–235.

    Article  Google Scholar 

  2. Cohen LB, Keynes RD, Hille B. Light scattering and birefringence changes during nerve activity. Nature. 1968;218:438–41.

    Article  CAS  Google Scholar 

  3. Tasaki I, Watanabe A, Sandlin R, Carnay L. Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc Natl Acad Sci U S A. 1968;61:883. https://doi.org/10.1073/pnas.61.3.883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salama G, Morad M. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science. 1976;(80- ). https://doi.org/10.1126/science.191.4226.485.

  5. George SA, Efimov IR. Optocardiography: a review of its past, present, and future. Curr Opin Biomed Eng. 2019;9:74–80.

    Article  Google Scholar 

  6. Brianna C, Sofian O, Alexander Z, Roman P, Roman S, Sharon AG, Igor RE. Open-source multiparametric optocardiography. Sci Rep. 2019;9:721.

    Article  Google Scholar 

  7. Salama G, Lombardi R, Elson J. Maps of optical action potentials and NADH fluorescence in intact working hearts. Am J Physiol Heart Circ Physiol. 1987;252:H384.

    Article  CAS  Google Scholar 

  8. Efimov IR, Rendt JM, Salama G. Optical maps of intracellular [Ca2+]i transients and action potentials from the surface of perfused guinea pig hearts. Circulation. 1994;90(4):632.

    Google Scholar 

  9. Ratzlaff EH, Grinvald A. A tandem-lens epifluorescence macroscope: hundred-fold brightness advantage for wide-field imaging. J Neurosci Methods. 1991;36:127. https://doi.org/10.1016/0165-0270(91)90038-2.

    Article  CAS  PubMed  Google Scholar 

  10. Bray MA, Lin SF, Wikswo JP. Three-dimensional surface reconstruction and flourescent visualization of cardiac activation. IEEE Trans Biomed Eng. 2000;47:1382. https://doi.org/10.1109/10.871412.

    Article  CAS  PubMed  Google Scholar 

  11. Kay MW, Amison PM, Rogers JM. Three-dimensional surface reconstruction and panoramic optical mapping of large hearts. IEEE Trans Biomed Eng. 2004;51:1219–29.

    Article  Google Scholar 

  12. Qu F, Ripplinger CM, Nikolski VP, Grimm C, Efimov IR. Three-dimensional panoramic imaging of cardiac arrhythmias in rabbit heart. J Biomed Opt. 2007;12:044019. https://doi.org/10.1117/1.2753748.

    Article  PubMed  Google Scholar 

  13. Mitrea BG, Caldwell BJ, Pertsov AM. Imaging electrical excitation inside the myocardial wall. Biomed Opt Express. 2011;2:620.

    Article  Google Scholar 

  14. Walton RD, Xavier CDL, Tachtsidis I, Bernus O. Experimental validation of alternating transillumination for imaging intramural wave propagation. In: Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBS; 2011. p. 1676–9.

    Google Scholar 

  15. Neunlist M, Zou SZ, Tung L. Design and use of an “optrode” for optical recordings of cardiac action potentials. Pflügers Arch Eur J Physiol. 1992;420(5–6):611–7. https://doi.org/10.1007/BF00374641.

    Article  CAS  Google Scholar 

  16. Byars JL, Smith WM, Ideker RE, Fast VG. Development of an optrode for intramural multisite optical recordings of Vm in the heart. J Cardiovasc Electrophysiol. 2003;14:1196. https://doi.org/10.1046/j.1540-8167.2003.03203.x.

    Article  PubMed  Google Scholar 

  17. Caldwell BJ, Legrice IJ, Hooks DA, Tai DCS, Pullan AJ, Smaill BH. Intramural measurement of transmembrane potential in the isolated pig heart: validation of a novel technique. J Cardiovasc Electrophysiol. 2005;16:1001. https://doi.org/10.1111/j.1540-8167.2005.40558.x.

    Article  PubMed  Google Scholar 

  18. Khorana HG, Knox BE, Nasi E, Swanson R, Thompson DA. Expression of a bovine rhodopsin gene in Xenopus oocytes: demonstration of light-dependent ionic currents. Proc Natl Acad Sci U S A. 1988;85:7917–21.

    Article  CAS  Google Scholar 

  19. Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, Fleischmann BK, Sasse P. Optogenetic control of heart muscle in vitro and in vivo. Nat Methods. 2010;7:897–900.

    Article  CAS  Google Scholar 

  20. Arrenberg AB, Stainier DYR, Baier H, Huisken J. Optogenetic control of cardiac function. Science. 2010;330:971–4.

    Article  CAS  Google Scholar 

  21. Liao MLC, De Boer TP, Mutoh H, et al. Sensing cardiac electrical activity with a cardiac myocyte-targeted optogenetic voltage indicator. Circ Res. 2015;117:401–12.

    Article  Google Scholar 

  22. Shang W, Lu F, Sun T, et al. Imaging Ca2+ nanosparks in heart with a new targeted biosensor. Circ Res. 2014;114:412–20.

    Article  CAS  Google Scholar 

  23. Tallini YN, Ohkura M, Choi B-R, et al. Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci. 2006;103:4753–8.

    Article  CAS  Google Scholar 

  24. Invitrogen. The molecular probes handbook. A guide to fluorescent probes and labeling technologies. 11th ed. Carlsbad, CA: Life Technologies Corporation; 2010.

    Google Scholar 

  25. Huizar JF, Warren MD, Shvedko AG, Kalifa J, Moreno J, Mironov S, Jalife J, Zaitsev AV. Three distinct phases of VF during global ischemia in the isolated blood-perfused pig heart. Am J Physiol Heart Circ Physiol. 2007;293:H1617. https://doi.org/10.1152/ajpheart.00130.2007.

    Article  CAS  PubMed  Google Scholar 

  26. Wuskell JP, Boudreau D, Wei MD, et al. Synthesis, spectra, delivery and potentiometric responses of new styryl dyes with extended spectral ranges. J Neurosci Methods. 2006;151:200. https://doi.org/10.1016/j.jneumeth.2005.07.013.

    Article  PubMed  Google Scholar 

  27. Salama G, Choi BR, Azour G, Lavasani M, Tumbev V, Salzberg BM, Patrick MJ, Ernst LA, Waggoner AS. Properties of new, long-wavelength, voltage-sensitive dyes in the heart. J Membr Biol. 2005;208:125. https://doi.org/10.1007/s00232-005-0826-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matiukas A, Mitrea BG, Pertsov AM, Wuskell JP, Wei MD, Watras J, Millard AC, Loew LM. New near-infrared optical probes of cardiac electrical activity. Am J Physiol Heart Circ Physiol. 2006;290:H2633. https://doi.org/10.1152/ajpheart.00884.2005.

    Article  CAS  PubMed  Google Scholar 

  29. Jaimes R, Walton RD, Pasdois P, Bernus O, Efimov IR, Kay MW. A technical review of optical mapping of intracellular calcium within myocardial tissue. Am J Physiol Heart Circ Physiol. 2016;310:H1388. https://doi.org/10.1152/ajpheart.00665.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ridgway EB, Ashley CC. Calcium transients in single muscle fibers. Biochem Biophys Res Commun. 1967;29:229. https://doi.org/10.1016/0006-291X(67)90592-X.

    Article  CAS  PubMed  Google Scholar 

  31. Fabiato A. Rapid ionic modifications during the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985;85:189. https://doi.org/10.1085/jgp.85.2.189.

    Article  CAS  PubMed  Google Scholar 

  32. Blinks JR, Prendergast FG, Allen DG. Photoproteins as biological calcium indicators. Pharmacol Rev. 1976;28(1):1–93.

    CAS  PubMed  Google Scholar 

  33. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260(6):3440–50.

    Article  CAS  Google Scholar 

  34. Tsien RY, Pozzan T, Rink TJ. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature. 1982;295:68. https://doi.org/10.1038/295068a0.

    Article  CAS  PubMed  Google Scholar 

  35. Tsien RY, Pozzan T, Rink TJ. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a intracellularly trapped fluorescent indicator. J Cell Biol. 1982;94:325. https://doi.org/10.1083/jcb.94.2.325.

    Article  CAS  PubMed  Google Scholar 

  36. Tsien RY. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980;19:2396. https://doi.org/10.1021/bi00552a018.

    Article  CAS  PubMed  Google Scholar 

  37. Brack KE, Narang R, Winter J, Ng GA. The mechanical uncoupler blebbistatin is associated with significant electrophysiological effects in the isolated rabbit heart. Exp Physiol. 2013;98:1009. https://doi.org/10.1113/expphysiol.2012.069369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baker LC, Wolk R, Choi BR, Watkins S, Plan P, Shah A, Salama G. Effects of mechanical uncouplers, diacetyl monoxime, and cytochalasin-D on the electrophysiology of perfused mouse hearts. Am J Physiol Heart Circ Physiol. 2004;287:H1771. https://doi.org/10.1152/ajpheart.00234.2004.

    Article  CAS  PubMed  Google Scholar 

  39. Christoph J, Luther S. Marker-free tracking for motion artifact compensation and deformation measurements in optical mapping videos of contracting hearts. Front Physiol. 2018;9:1483. https://doi.org/10.3389/fphys.2018.01483.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rodriguez MP, Nygren A. Motion estimation in cardiac fluorescence imaging with scale-space landmarks and optical flow: a comparative study. IEEE Trans Biomed Eng. 2015;62:774. https://doi.org/10.1109/TBME.2014.2364959.

    Article  CAS  PubMed  Google Scholar 

  41. Bachtel AD, Gray RA, Stohlman JM, Bourgeois EB, Pollard AE, Rogers JM. A novel approach to dual excitation ratiometric optical mapping of cardiac action potentials with Di-4-ANEPPS using pulsed led excitation. IEEE Trans Biomed Eng. 2011;58:2120. https://doi.org/10.1109/TBME.2011.2148719.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lee P, Quintanilla JG, Alfonso-Almazán JM, et al. In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models. Cardiovasc Res. 2019;115:1659. https://doi.org/10.1093/cvr/cvz039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon A. George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

George, S.A. (2021). History of Optical Mapping. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics