Skip to main content
Log in

Properties of New, Long-Wavelength, Voltage-sensitive Dyes in the Heart

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Membrane potential measurements using voltage-sensitive dyes (VSDs) have made important contributions to our understanding of electrophysiological properties of multi-cellular systems. Here, we report the development of long wavelength VSDs designed to record cardiac action potentials (APs) from deeper layers in the heart. The emission spectrum of styryl VSDs was red-shifted by incorporating a thienyl group in the polymethine bridge to lengthen and retain the rigidity of the chromophore. Seven dyes, Pittsburgh I to IV and VI to VIII (PGH I-VIII) were synthesized and characterized with respect to their spectral properties in organic solvents and heart muscles. PGH VSDs exhibited 2 absorption, 2 excitation and 2 voltage-sensitive emission peaks, with large Stokes shifts (> 100 nm). Hearts (rabbit, guinea pig and Rana pipiens) and neurohypophyses (CD-1 mice) were effectively stained by injecting a bolus (10–50 μl) of stock solution of VSD (2–5 mM) dissolved in in dimethylsulfoxide plus low molecular weight Pluronic (16% of L64). Other preparations were better stained with a bolus of VSD (2–5 mM) Tyrode’s solution at pH 6.0. Action spectra measured with a fast CCD camera showed that PGH I exhibited an increase in fractional fluorescence, ΔF/F = 17.5 % per AP at 720 nm with 550 nm excitation and ΔF/F = − 6% per AP at 830 nm with 670 nm excitation. In frog hearts, PGH1 was stable with ∼30% decrease in fluorescence and AP amplitude during 3 h of intermittent excitation or 1 h of continuous high intensity excitation (300 W Xe-Hg Arc lamp), which was attributed to a combination of dye wash out > photobleaching > dynamic damage > run down of the preparation. The long wavelengths, large Stokes shifts, high ΔF/F and low baseline fluorescence make PGH dyes a valuable tool in optical mapping and for simultaneous mapping of APs and intracellular Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Baker B.J., Kosmidis E.K., Vucinic D., Falk C.X., Cohen L.B., Djurisic M., Zecevic D. 2005. Imaging brain activity with voltage- and calcium-sensitive dyes. Cell Mol. Neurobiol 25:245–282

    Article  CAS  PubMed  Google Scholar 

  • Blasdel G.G., Salama G. 1986. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585

    Article  CAS  PubMed  Google Scholar 

  • Choi B.-R., Salama G. 1998b. What is the role of the AV node if the AV delay occurs before it? Am. J. Physiol. 274:H1905–H1909

    Google Scholar 

  • Choi B.R., Burton F., Salama G. 2002. Cytosolic Ca2+ triggers early afterdepolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome. J. Physiol. 543:615–631

    Article  CAS  PubMed  Google Scholar 

  • Choi B.R., Salama G. 1998a. Optical mapping of atrioventricular node reveals a conduction barrier between atrial and nodal cells. Am. J. Physiol. 274:H829–H845

    CAS  Google Scholar 

  • Choi B.R., Salama G. 2000. Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. J. Physiol. 529:171–188

    Article  CAS  PubMed  Google Scholar 

  • Cohen L., Hopp H.P., Wu J.Y., Xiao C., London J. 1989. Optical measurement of action potential activity in invertebrate ganglia. Anni. Rev. Physiol. 51:527–541

    Article  CAS  PubMed  Google Scholar 

  • Cohen L.B., Salzberg B.M., Davila H.V., Ross W.N., Landowne D., Waggoner A.S., Wang C.H. 1974. Changes in axon fluorescence during activity: molecular probes of membrane potential. J. Membrane Biol. 9:1–36

    Article  CAS  Google Scholar 

  • Davila H.V., Salzberg B.M., Cohen L.B., Waggoner A.S. 1973. A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nat. New Biol. 241:159–160

    CAS  PubMed  Google Scholar 

  • Djurisic M., Zochowski M., Wachowiak M., Falk C.X., Cohen L.B., Zecevic D. 2003. Optical monitoring of neural activity using voltage-sensitive dyes. Meth. Enzymol. 361:423–451

    Article  CAS  PubMed  Google Scholar 

  • Efimov I.R., Huang D.T., Rendt J.M., Salama G. 1994. Optical mapping of repolarization and refractoriness from intact hearts. Circulation 90:1469–1480

    CAS  PubMed  Google Scholar 

  • Gainer H., Wolfe S.A., Jr., Obaid A.L., Salzberg B.M. 1986. Action potentials and frequency-dependent secretion in the mouse neurohypophysis. Neuroendocrinology 43:557–563

    CAS  PubMed  Google Scholar 

  • Girouard S.D., Laurita K.R., Rosenbaum D.S. 1996. Unique properties of cardiac action potentials recorded with voltage-sensitive dyes. J. Cardiovasc. Electrophysiol. 7:1024–1038

    CAS  PubMed  Google Scholar 

  • Kilsdonk E.P., Yancey P.O., Stoudt G.W., Bangerter F.W., Johnson W.J., Phillips M.C., Rothblat G.H. 1995. Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 270:17250–17256

    Article  CAS  PubMed  Google Scholar 

  • Loew L.M., Cohen L.B., Dix J., Fluhler E.N., Montana V., Salama G., Wu J.Y. 1992. A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J. Membrane Biol. 130:1–10

    Article  CAS  Google Scholar 

  • Morad M., Salama G. 1979. Optical probes of membrane potential in heart muscle. J. Physiol. 292:267–295

    CAS  PubMed  Google Scholar 

  • Muschol M., Kosterin P., Ichikawa M., Salzberg B.M. 2003. Activity-dependent depression of excitability and calcium transients in the neurohypophysis suggests a model of “stuttering conduction”. J. Neurosci. 23:11352–11362

    CAS  PubMed  Google Scholar 

  • Obaid A.L., Flores R., Salzberg B.M. 1989. Calcium channels that are required for secretion from intact nerve terminals of vertebrates are sensitive to omega-conotoxin and relatively insensitive to dihydropyridines. Optical studies with and without voltage-sensitive dyes.J. Gen. Physiol. 93:715–729

    Article  CAS  PubMed  Google Scholar 

  • Obaid A.L., Koyano T., Lindstrom J., Sakai T., Salzberg B.M. 1999. Spatiotemporal patterns of activity in an intact mammalian network with single-cell resolution: optical studies of nicotinic activity in an enteric plexus. J. Neurosci. 19:3073-3093

    CAS  PubMed  Google Scholar 

  • Omichi C., Lamp ST., Lin S.F., Yang J., Baher A., Zhou S., Attin M., Lee M.H., Karagueuzian H.S., Kogan B., Qu Z., Garfinkel A., Chen P.S., Weiss J.N. 2004. Intracellular Ca dynamics in ventricular fibrillation. Am. J. Physiol. 286:H1836–H1844

    CAS  Google Scholar 

  • Parsons T.D., Obaid A.L., Salzberg B.M. 1992. Aminoglycoside antibiotics block voltage-dependent calcium channels in intact vertebrate nerve terminals. J. Gen. Physiol. 99:491–504

    Article  CAS  PubMed  Google Scholar 

  • Rohr S., Salzberg B.M.. 1994. Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale. Biophys. J. 67:1301–1315

    Article  CAS  PubMed  Google Scholar 

  • Salama G. 1988. Optical Measurements of Transmembrane Potential in Heart. In: Spectroscopic Probes of Membrane Potential. L. Loew, editor. pp. Chap 21. pp. 137–199. CRC Uniscience Pub, Boca Raton FL.

  • Salama G. 2001. The application of voltage-sensitive dyes to cardiac electrophysiology: Historical perspective and background. Futura Pub., Armonk, NY 10504–0418

    Google Scholar 

  • Salama G., Choi B.R. 2000. Images of asction potential propagation in heart. News Physiol. Sci. 15:33–41

    PubMed  Google Scholar 

  • Salama G., Lombardi R., Elson J. 1987. Maps of optical action potentials and NADH fluorescence in intact working hearts. Am. J. Physiol. 252:H384–H394

    CAS  PubMed  Google Scholar 

  • Salama G., Morad M. 1976. Merocyanine 540 as an optical probe of transrnembrane electrical activity in the heart. Science 191:485–487

    CAS  PubMed  Google Scholar 

  • Salzberg B.M. 1983. Optical recording of electrical activity in neurons using molecular probes. In: J. Barker, J. McKelvy, editors, Current Methods in Cellular Neurobiology. John Wiley and Sons, Inc., New York pp. 139–187

    Google Scholar 

  • Salzberg B.M., Davila H.V., Cohen L.B. 1973. Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature 246:508–509

    Article  CAS  PubMed  Google Scholar 

  • Salzberg B.M., Grinvald A., Cohen L.B., Davila H.V., Ross W.N. 1977. Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J. Neurophysiol. 40:1281–1291

    CAS  PubMed  Google Scholar 

  • Salzberg B.M., Obaid A.L., Gainer H. 1985. Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis. J. Gen. Physiol. 86:395–411

    Article  CAS  PubMed  Google Scholar 

  • Salzberg B.M., Obaid A.L., Senseman D.M., Gainer H. 1983. Optical recording of action potentials from vertebrate nerve terminals using potentiometric probes provides evidence for sodium and calcium components. Nature 306:36–40

    Article  CAS  PubMed  Google Scholar 

  • Shoham D., Glaser D.E., Arieli A., Kenet T., Wijnbergen C., Toledo Y., Hildesheim R., Grinvald A. 1999. Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron 24:791–802

    Article  CAS  PubMed  Google Scholar 

  • Wuskell, J.P., Boudreau, D., Wei, M.D., Jin, L., Engl, R., Chebolu, R., Bullen, A., Hoffacker, K.D., Kerimo, J., Cohen, L.B., Zochowski, M.R., Loew, L.M. 2005. Synthesis, spectra, delivery and potentiometric responses of new styryl dyes with extended spectral ranges. J Neurosci Methods.

Download references

Acknowledgements

Supported, in part, by NIH-NHLBI grants HL69097, HL59614 and HL70722 to G Salama, CA97541 to A.S. Waggoner and NS40966 and NS16824 to B.M. Salzberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Salama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salama, G., Choi, BR., Azour, G. et al. Properties of New, Long-Wavelength, Voltage-sensitive Dyes in the Heart. J Membrane Biol 208, 125–140 (2005). https://doi.org/10.1007/s00232-005-0826-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0826-8

Keywords

Navigation