Skip to main content

Advanced Three-Dimensional Optical Mapping

  • Chapter
  • First Online:
Cardiac Bioelectric Therapy

Abstract

Optical imaging using voltage-sensitive dyes is a widely used technique in cardiac electrophysiology, which has been extensively applied to the study of arrhythmias. It allows for high spatial and temporal resolution acquisitions of propagating action potentials in cardiac tissues. However, cardiac arrhythmias, and especially ventricular arrhythmias in the larger mammalian species, are complex three-dimensional phenomena that ideally require three-dimensional depth-resolved mapping through the myocardial wall thickness to be fully understood. In its most basic application, i.e., epi-fluorescence, cardiac optical imaging provides only limited information about intramural activity. Nonetheless, the recent development of near-infrared voltage-sensitive dyes and imaging modalities, such as transillumination, have paved the way for novel three-dimensional optical imaging techniques aiming at depth-resolved reconstruction of cardiac electrical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rahman F, Kwan GF, Benjamin EJ. Global epidemiology of atrial fibrillation. Nat Rev Cardiol. 2014;11(11):639–54.

    Article  PubMed  Google Scholar 

  2. Myerburg RJ, Castellanos A. Sudden cardiac death. In: Jalife J, Zipes DP, editors. Cardiac electrophysiology: from cell to bedside. 5th ed. Philadelphia: Saunders; 2009. p. 797–808.

    Google Scholar 

  3. Kleber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev. 2004;84(2):431–88.

    Article  CAS  PubMed  Google Scholar 

  4. Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007;87(2):425–56.

    Article  CAS  PubMed  Google Scholar 

  5. Efimov IR, Nikolski VP, Salama G. Optical imaging of the heart. Circ Res. 2004;95(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  6. Herron TJ, Lee P, Jalife J. Optical imaging of voltage and calcium in cardiac cells & tissues. Circ Res. 2012;110(4):609–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Salzberg BM, Davila HV, Cohen LB. Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature. 1973;246(5434):508–9.

    Article  CAS  PubMed  Google Scholar 

  8. Davila HV, Salzberg BM, Cohen LB, Waggoner AS. A large change in axon fluorescence that provides a promising method for measuring membrane potential. Nat New Biol. 1973;241(109):159–60.

    Article  CAS  PubMed  Google Scholar 

  9. Salama G, Morad M. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science. 1976;191(4226):485–7.

    Article  CAS  PubMed  Google Scholar 

  10. Dillon S, Morad M. A new laser scanning system for measuring action potential propagation in the heart. Science. 1981;214(4519):453–6.

    Article  CAS  PubMed  Google Scholar 

  11. Sawanobori T, Hirota A, Fujii S, Kamino K. Optical recording of conducted action potential in heart muscle using a voltage-sensitive dye. Jpn J Physiol. 1981;31(3):369–80.

    Article  CAS  PubMed  Google Scholar 

  12. Salama G, Lombardi R, Elson J. Maps of optical action potentials and NADH fluorescence in intact working hearts. Am J Phys. 1987;252(2 Pt 2):H384–94.

    CAS  Google Scholar 

  13. Davidenko JM, Kent PF, Chialvo DR, Michaels DC, Jalife J. Sustained vortex-like waves in normal isolated ventricular muscle. Proc Natl Acad Sci U S A. 1990;87(22):8785–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature. 1992;355(6358):349–51.

    Article  CAS  PubMed  Google Scholar 

  15. Gray RA, Jalife J, Panfilov AV, Baxter WT, Cabo C, Davidenko JM, et al. Mechanisms of cardiac fibrillation. Science. 1995;270(5239):1222–3; author reply 4–5.

    Article  CAS  PubMed  Google Scholar 

  16. Witkowski FX, Leon LJ, Penkoske PA, Giles WR, Spano ML, Ditto WL, et al. Spatiotemporal evolution of ventricular fibrillation. Nature. 1998;392(6671):78–82.

    Article  CAS  PubMed  Google Scholar 

  17. Gray RA, Pertsov AM, Jalife J. Spatial and temporal organization during cardiac fibrillation. Nature. 1998;392(6671):75–8.

    Article  CAS  PubMed  Google Scholar 

  18. Zaitsev AV, Berenfeld O, Mironov SF, Jalife J, Pertsov AM. Distribution of excitation frequencies on the epicardial and endocardial surfaces of fibrillating ventricular wall of the sheep heart. Circ Res. 2000;86(4):408–17.

    Article  CAS  PubMed  Google Scholar 

  19. Wikswo JP Jr, Lin SF, Abbas RA. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J. 1995;69(6):2195–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin SF, Roth BJ, Wikswo JP Jr. Quatrefoil reentry in myocardium: an optical imaging study of the induction mechanism. J Cardiovasc Electrophysiol. 1999;10(4):574–86.

    Article  CAS  PubMed  Google Scholar 

  21. Efimov I, Salama G. The future of optical mapping is bright: RE: review on: “Optical Imaging of Voltage and Calcium in Cardiac Cells and Tissues” by Herron, Lee, and Jalife. Circ Res. 2012;110(10):e70–1.

    Article  CAS  PubMed  Google Scholar 

  22. Fast VG. Simultaneous optical imaging of membrane potential and intracellular calcium. J Electrocardiol. 2005;38(4 Suppl):107–12.

    Article  PubMed  Google Scholar 

  23. Choi BR, Salama G. Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. J Physiol. 2000;529(Pt 1):171–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fast VG, Ideker RE. Simultaneous optical mapping of transmembrane potential and intracellular calcium in myocyte cultures. J Cardiovasc Electrophysiol. 2000;11(5):547–56.

    Article  CAS  PubMed  Google Scholar 

  25. Girouard SD, Laurita KR, Rosenbaum DS. Unique properties of cardiac action potentials recorded with voltage-sensitive dyes. J Cardiovasc Electrophysiol. 1996;7(11):1024–38.

    Article  CAS  PubMed  Google Scholar 

  26. Hyatt CJ, Mironov SF, Wellner M, Berenfeld O, Popp AK, Weitz DA, et al. Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns. Biophys J. 2003;85(4):2673–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Janks DL, Roth BJ. Averaging over depth during optical mapping of unipolar stimulation. IEEE Trans Biomed Eng. 2002;49(9):1051–4.

    Article  PubMed  Google Scholar 

  28. Bernus O, Wellner M, Mironov SF, Pertsov AM. Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods. Phys Med Biol. 2005;50(2):215–29.

    Article  CAS  PubMed  Google Scholar 

  29. Khait VD, Bernus O, Mironov SF, Pertsov AM. Method for the three-dimensional localization of intramyocardial excitation centers using optical imaging. J Biomed Opt. 2006;11(3):34007.

    Article  PubMed  Google Scholar 

  30. Bishop MJ, Rodriguez B, Eason J, Whiteley JP, Trayanova N, Gavaghan DJ. Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping. Biophys J. 2006;90(8):2938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hyatt CJ, Zemlin CW, Smith RM, Matiukas A, Pertsov AM, Bernus O. Reconstructing subsurface electrical wave orientation from cardiac epi-fluorescence recordings: Monte Carlo versus diffusion approximation. Opt Express. 2008;16(18):13758–72.

    Article  CAS  PubMed  Google Scholar 

  32. Ding L, Splinter R, Knisley SB. Quantifying spatial localization of optical mapping using Monte Carlo simulations. IEEE Trans Biomed Eng. 2001;48(10):1098–107.

    Article  CAS  PubMed  Google Scholar 

  33. Hyatt CJ, Mironov SF, Vetter FJ, Zemlin CW, Pertsov AM. Optical action potential upstroke morphology reveals near-surface transmural propagation direction. Circ Res. 2005;97(3):277–84.

    Article  CAS  PubMed  Google Scholar 

  34. Walton RD, Smith RM, Mitrea BG, White E, Bernus O, Pertsov AM. Extracting surface activation time from the optically recorded action potential in three-dimensional myocardium. Biophys J. 2012;102(1):30–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Knisley SB, Neuman MR. Simultaneous electrical and optical mapping in rabbit hearts. Ann Biomed Eng. 2003;31(1):32–41.

    Article  PubMed  Google Scholar 

  36. Zemlin CW, Bernus O, Matiukas A, Hyatt CJ, Pertsov AM. Extracting intramural wavefront orientation from optical upstroke shapes in whole hearts. Biophys J. 2008;95(2):942–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wellner M, Berenfeld O, Jalife J, Pertsov AM. Minimal principle for rotor filaments. Proc Natl Acad Sci U S A. 2002;99(12):8015–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keener JP. The dynamics of 3-dimensional scroll waves in excitable media. Physica D. 1988;31(2):269–76.

    Article  Google Scholar 

  39. Efimov IR, Sidorov V, Cheng Y, Wollenzier B. Evidence of three-dimensional scroll waves with ribbon-shaped filament as a mechanism of ventricular tachycardia in the isolated rabbit heart. J Cardiovasc Electrophysiol. 1999;10(11):1452–62.

    Article  CAS  PubMed  Google Scholar 

  40. Baxter WT, Mironov SF, Zaitsev AV, Jalife J, Pertsov AM. Visualizing excitation waves inside cardiac muscle using transillumination. Biophys J. 2001;80(1):516–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bernus O, Mukund KS, Pertsov AM. Detection of intramyocardial scroll waves using absorptive transillumination imaging. J Biomed Opt. 2007;12(1):014035.

    Article  PubMed  Google Scholar 

  42. Matiukas A, Mitrea BG, Pertsov AM, Wuskell JP, Wei MD, Watras J, et al. New near-infrared optical probes of cardiac electrical activity. Am J Physiol Heart Circ Physiol. 2006;290(6):H2633–43.

    Article  CAS  PubMed  Google Scholar 

  43. Matiukas A, Mitrea BG, Qin M, Pertsov AM, Shvedko AG, Warren MD, et al. Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Heart Rhythm. 2007;4(11):1441–51.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Salama G, Choi BR, Azour G, Lavasani M, Tumbev V, Salzberg BM, et al. Properties of new, long-wavelength, voltage-sensitive dyes in the heart. J Membr Biol. 2005;208(2):125–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Walton RD, Benoist D, Hyatt CJ, Gilbert SH, White E, Bernus O. Dual excitation wavelength epifluorescence imaging of transmural electrophysiological properties in intact hearts. Heart Rhythm. 2010;7(12):1843–9.

    Article  PubMed  Google Scholar 

  46. Gibson AP, Hebden JC, Arridge SR. Recent advances in diffuse optical imaging. Phys Med Biol. 2005;50(4):R1–43.

    Article  CAS  PubMed  Google Scholar 

  47. Hebden JC, Gibson A, Austin T, Yusof RM, Everdell N, Delpy DT, et al. Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography. Phys Med Biol. 2004;49(7):1117–30.

    Article  PubMed  Google Scholar 

  48. Hillman EM, Devor A, Bouchard MB, Dunn AK, Krauss GW, Skoch J, et al. Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. NeuroImage. 2007;35(1):89–104.

    Article  PubMed  Google Scholar 

  49. Hillman EM, Bernus O, Pease E, Bouchard MB, Pertsov A. Depth-resolved optical imaging of transmural electrical propagation in perfused heart. Opt Express. 2007;15(26):17827–41.

    Article  PubMed  Google Scholar 

  50. Hillman EM, Boas DA, Dale AM, Dunn AK. Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media. Opt Lett. 2004;29(14):1650–2.

    Article  PubMed  Google Scholar 

  51. Mitrea BG, Wellner M, Pertsov AM. Monitoring intramyocardial reentry using alternating transillumination. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4194–7.

    PubMed Central  Google Scholar 

  52. Caldwell BJ, Wellner M, Mitrea BG, Pertsov AM, Zemlin CW. Probing field-induced tissue polarization using transillumination fluorescent imaging. Biophys J. 2010;99(7):2058–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Walton RD, Bernus O. Towards depth-resolved optical imaging of cardiac electrical activity. Adv Exp Med Biol. 2015;859:405–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bernus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernus, O., Walton, R.D. (2021). Advanced Three-Dimensional Optical Mapping. In: Efimov, I.R., Ng, F.S., Laughner, J.I. (eds) Cardiac Bioelectric Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-63355-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63355-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63354-7

  • Online ISBN: 978-3-030-63355-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics